Census and Statistical Characterization of Soil and Water Quality at Abandoned and Other Centralized and Commercial Drilling-Fluid Disposal Sites in Louisiana, New Mexico, Oklahoma, and Texas

Final Technical Report

by Alan R. Dutton and H. Seay Nance

June 2003

DOE Award No. DE-AC26-99BC15225

Bureau of Economic Geology Scott W. Tinker, Director The University of Texas at Austin University Station, Box X Austin, Texas 78713-8924

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of its employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

The views and information contained in this document should not be interpreted as necessarily representing the official policies, regulations, or records, either expressed or implied, of the Railroad Commission of Texas, Oklahoma Corporation Commission or Oklahoma Energy Resources Board, Louisiana Department of Natural Resources Office of Conservation, Louisiana Department of Environmental Quality, or New Mexico Energy, Mineral, and Natural Resources Department Oil Conservation Division.

ABSTRACT

Commercial and centralized drilling-fluid disposal (CCDD) sites receive a portion of spent drilling fluids for disposal from oil and gas exploration and production (E&P) operations. Many older and some abandoned sites may have operated under less stringent regulations than are currently enforced. This study provides a census, compilation, and summary of information on active, inactive, and abandoned CCDD sites in Louisiana, New Mexico, Oklahoma, and Texas, intended as a basis for supporting State-funded assessment and remediation of abandoned sites. Closure of abandoned CCDD sites is within the jurisdiction of State regulatory agencies. Sources of data used in this study on abandoned CCDD sites mainly are permit files at State regulatory agencies. Active and inactive sites were included because data on abandoned sites are sparse. Onsite reserve pits at individual wells for disposal of spent drilling fluid are not part of this study.

Of 287 CCDD sites in the four States for which we compiled data, 34 had been abandoned whereas 54 were active and 199 were inactive as of January 2002. Most were disposal-pit facilities; five percent were land treatment facilities. A typical disposal-pit facility has fewer than 3 disposal pits or cells, which have a median size of approximately 2 acres each. Data from well-documented sites may be used to predict some conditions at abandoned sites; older abandoned sites might have outlier concentrations for some metal and organic constituents. Groundwater at a significant number of sites had an average chloride concentration that exceeded nonactionable secondary drinking water standard of 250 mg/L, or a total dissolved solids content of >10,000 mg/L, the limiting definition for underground sources of drinking

water source, or both. Background data were lacking, however, so we did not determine whether these concentrations in groundwater reflected site operations.

Site remediation has not been found necessary to date for most abandoned CCDD sites; site assessments and remedial feasibility studies are ongoing in each State. Remediation alternatives addressed physical hazards and potential for groundwater transport of dissolved salt and petroleum hydrocarbons that might be leached from wastes. Remediation options included excavation of wastes and contaminated adjacent soils followed by removal to permitted disposal facilities or land farming if sufficient on-site area were available.

CONTENTS

DISCLAIMER		•••••	iii
ABSTRACT			v
CONTENTS			vii
EXECUTIVE SUMMARY			
INTRODUCTION			5
REGULATION			
Background	Sec. Management		
Texas Regulation of Oil and Gas Drilli	ing Wastes		15
INDUSTRY PRACTICES AND REGUI			
Generation of Spent Drilling Fluid			
Regional Characteristics of CCDD Site	es		22
METHODS			24
Data Sources and Scope of Analyses			100
Limitations of CCDD Data			
RESULTS AND DISCUSSION	The state of the s		
Census of CCCD Sites			
Distribution Patterns of Constituents a			
Chemical Data			
Ranges, Medians, and Means of Const			
CCDD Site-specific Data			
Louisiana Sitas			20

Bateman Island Site	
Big Diamond Site	40
Bourg Site	
Elm Grove Site	
Laccassine Site	45
Lafrouche Site	45
MAR Site	48
Mermentau Site	48
Reliable Site	
Waguespack Site	The state of the s
New Mexico Sites	53
CRI Halfway Site	53
Oklahoma Sites	
Bluff Site	56
FPC Site	58
Gowen Site	58
Guard Site	
Kelly Site	61
Merkle Site	64
Safe Earth Site	64
Southard Site	67
T & S Site	67
Webb/Femco Site	70

exas Sites	70
Albany Tank Yard	70
Briggs Site	
T. L. Carter Site	75
Fox Vacuum Site	75
Gober Disposal Site	75
Manvel Saltwater Disposal Site	
Munson Site	80
Red River Oilfield Services Site	
Roeling Vacuum Site	84
Rule Tank Trucks Site	84
Steve's Oilfield Services	87
Albany Tank Yard	
Briggs Site	91
T. L. Carter Site	93
Fox Vacuum Site	94
Gober Disposal Site	94
Manvel Saltwater Disposal Site	94
Munson Site	96
Post Oak Site	
Red River Oilfield Services Site	97
	Briggs Site

	Roeling Vacuum Site9	8
	Rule Tank Trucks Site9	19
	Steve's Oilfield Services9	19
D	iscussion10	0
CON	NCLUSIONS10)1
ACK	KNOWLEDGMENTS10)4
REF	ERENCES10)4
APP	PENDIX AA-	-1
APP	ENDIX BB-	-1
	Figures	
1.	Commercial and centralized drilling-fluid disposal sites	
	in the four-state study area	.6
2.	Chloride and TDS trends in groundwater for selected CCDD sites2	9
3.	Cumulative and frequency graphs of numbers of pits per CCDD site3	1
4.	Cumulative and frequency graphs of areal coverage of pits per CCDD site	32
5.	Cumulative and frequency graphs for selected constituents	
	in groundwater and disposal pit contents	5
6.	Maps and histograms depicting the Bateman Island site,	
	St. Mary's Parish, Louisiana	39
7.	Maps and histograms depicting the Big Diamond site,	
	Cameron Parish, Louisiana	11

8.	Maps and histograms depicting the Bourg site, Lafrouche Parish,	
	Louisiana	43
9.	Maps and histograms depicting the Elm Grove site,	
	Bossier Parish, Louisiana	44
10.	Maps and histograms depicting the Laccassine site,	
	Jefferson Davis Parish, Louisiana	46
11.	Maps and histograms depicting the Lafrouche site,	
	Lafrouche Parish, Louisiana	47
12.	Maps and histograms depicting the Mar site, St. Landry Parish, Louisiana	49
13.	Maps and histograms depicting the Mermentau site,	
	Jefferson Davis Parish, Louisiana	50
14.	Maps and histograms depicting the Reliable site,	
	Pointe Coupee Parish, Louisiana	52
15.	Maps and histograms depicting the Waguespack site,	
	Iberia Parish, Louisiana	54
16.	Maps and histograms depicting the CRI Halfway site,	
	Lea County, New Mexico	55
17.	Maps and histograms depicting the Bluff site, Major County,	
	Oklahoma	57
18.	Maps and histograms depicting the FPC site, Canadian County,	
	Oklahoma	59
19.	Maps and histograms depicting the Gowen site, Latimer County,	
	Oklahoma	60

20.	Maps and histograms depicting the Guard site, Major County,	
	Oklahoma	62
21.	Maps and histograms depicting the Kelly site, McClain County,	
	Oklahoma	63
22.	Maps and histograms depicting the Merkle site,	
	Pottawatomie County, Oklahoma	65
23.	Maps and histograms depicting the Safe Earth site,	
	Roger Mills County, Oklahoma	66
24.	Maps and histograms depicting the Southard site, Blaine County,	
	Oklahoma	68
25.	Maps and histograms depicting the T & S site, McClain County,	
	Oklahoma	69
26.	Maps and histograms depicting the Webb/Femco site,	
	McClain County, Oklahoma	71
27.	Maps and histograms depicting the Briggs site, Matagorda County,	
	Texas	72
28.	Maps and histograms depicting the Albany Tank Yard site,	
	Shackelford County, Texas	74
29.	Maps and histograms depicting the Fox Vacuum site, Jasper County,	
	Texas	76
30.	Maps and histograms depicting the Gober Disposal site, Wise County,	
	Texas	77

31.	Maps and histograms depicting the Manvel Saltwater Disposal site,
	Brazoria County, Texas
32.	Maps and histograms depicting the Robert Munson site,
	Burleson County, Texas
33.	Maps and histograms depicting the Post Oak site, Lee County, Texas82
34.	Maps and histograms depicting the Red River Oilfield Services site,
	Wilbarger County, Texas83
35.	Maps and histograms depicting the Roeling Vacuum site,
	Liberty County, Texas85
36.	Maps and histograms depicting the Rule Tank Trucks site,
	Haskell County, Texas
37.	Maps and histograms depicting the Steve's Oilfield Services site,
	Kleberg County, Texas
	Tables
1.	Oil and gas wastes exempt from RCRA hazardous waste regulation10
2.	RCRA non-exempt oil and gas waste
3.	State regulatory guidelines and comparison of site-averages of waste
	and groundwater constituents
4.	Concentration limits of certain constituents of oil and gas wastes 16
	allowed in municipal solid-waste disposal landfills in Texas16
5.	Percentage of drilling waste by mud type
6.	Estimated volume (thousand barrels) of disposal of solid drilling waste21

7.	Data availability for drilling-fluid disposal sites in Louisiana,	
	New Mexico, Oklahoma, and Texas	25
8.	Number of sites in database with records on chemical analyses	
	of sludge, pit water, or groundwater	26
9.	Comparison between authorized and abandoned sites for site-average	
	concentrations of constituents in pit sludge and groundwater	36

EXECUTIVE SUMMARY

A portion of drilling fluids used at oil and gas exploration and production (E&P) sites has been disposed of at Commercial and Centralized Drilling-fluid Disposal (CCDD) sites.

Commercial facilities accept drilling fluid and other waste allowed by their disposal permit from any operator on a fee basis. Centralized facilities receive spent drilling fluid from several leases held by an operator or from several sites on the same lease. Centralized facilities are noncommercial sites with no commingling of waste from other operators. During the past few decades, the amount of spent drilling fluids sent offsite for disposal at CCDD sites has decreased from about 28 to 2 percent on a nationwide basis (American Petroleum Institute, 2000).

Drilling fluids used in E&P operations may be mixed with drilling additives, cuttings, formation water and crude oil. Although current regulations address the operation and closure of present-day drilling-fluid disposal sites, some older sites may have operated under less stringent regulation. Sites may have received wastes other than spent drilling fluids and may have been abandoned without proper closure. Prediction of constituent identities and concentrations at abandoned facilities is difficult because few compilations and summaries are available.

This study is a census, compilation, and summary of information on currently active, inactive, and abandoned CCDD sites in Louisiana, New Mexico, Oklahoma, and Texas. It also includes data from a few sites that received spent drilling-fluid in addition to their primary operations. Information was collected from State-agency files to develop and evaluate a multistate information data base of credible technical data and provide a basis for making State-funded site assessment and remediation more cost effective. Because data on abandoned sites is sparse, we also examined permitted sites that are currently operating (active) or have been closed

(inactive) under State regulation. We tested the hypothesis that data from well-documented active or recently active sites could be used to predict conditions that at poorly documented abandoned sites.

CCDD sites in the four states included in the study differ both because of State regulation and industry practice as well as local and regional environmental conditions. New Mexico, for example, discourages off-site disposal of drilling waste. Differences in regulatory requirements and in industry practices result in variations in the abundances of data for CCDD sites in State agency files.

Data were collected and tabulated on 287 CCDD sites in Louisiana, New Mexico,
Oklahoma, and Texas. Of these, 54 were active and 199 were inactive as of January 2002, and 34
had been abandoned. Most (95 percent) were disposal-pit facilities and the rest were used for
land treatment of drilling fluids. The typical disposal-pit facilities have fewer than 3 disposal
cells on site. The median size of a facility's pits is approximately 2 acres. Clay-lined earthen pits
were found to be the most common repositories for drilling wastes. Treatment cells from 12
CCDD land-treatment facilities were also examined because they provided additional data on
E&P waste composition and on-site groundwater characteristics. A few sites that were permitted
as salt-water disposal or oil-reclamation facilities were also included where drilling fluid waste
was identified on the site. There also are some data where drilling fluids had been discharged at
an unauthorized site.

Standard laboratory were found referenced in data reports, although many data reports contained no reference to analytical method. Reports that did not specify analytical methodologies might have applied standard procedures. We assumed that data from different sites can be compared regardless of analytical method.

Data from well-documented sites may be used to predict some conditions at abandoned sites. Maximum average concentrations of constituents at abandoned sites and at well documented active and inactive CCDD sites are generally consistent. Older abandoned sites, however, might have outlier concentrations for some metal and organic constituents; differences may reflect a change in industry practice. Maximum average concentration of barium, chromium, lead, silver, TPH, or BTEX is greater at some abandoned sites than at active and inactive CCDD sites.

Groundwater at a significant number of sites had average chloride concentrations that exceeded unenforceable aesthetic U. S. Environmental Protection Agency (EPA) secondary drinking water standards (SMCL) of 250 mg/L, or total dissolved solids (TDS) concentrations that exceeded EPA standards of 10,000 mg/L for underground drinking water sources (USDW), or both.

Techniques used for site-assessment documented in case files ranged from visual inspections to comprehensive geological and geotechnical surveys. Survey measurements have included geophysical measurements; sampling and analyses of chemical composition of wastes, soil, groundwater, and surface water; measurement of water levels in monitoring wells; soil-gas measurement; radon detection; well tests of hydraulic conductivity; elevation surveys; and coring and description of drilled core. Such in-depth assessments are expensive, however, and may not be cost-effective for all sites.

Site remediation measures had been undertaken for several CCDD sites in Louisiana,
Oklahoma, and Texas. Remediation techniques were recommended on the basis of site
assessments. Remediation alternatives addressed physical hazards and potential for groundwater
transport of dissolved salt and petroleum hydrocarbons that might be leached from wastes.

Recommended options included excavation of wastes and contaminated adjacent soils followed by either removal to permitted disposal facilities, or land farming (land spreading or land treatment) if sufficient on-site area were available. Groundwater remediation was not found to be necessary at any abandoned CCDD site in Texas as of December 2002. Installation of additional monitoring wells and continued monitoring of on-site groundwater were generally recommended; further monitoring may indicate a need for remediation. Assessments are continuing for most abandoned CCDD sites in our investigation and final determinations for remediation measures are pending.

INTRODUCTION

A portion of oil and gas exploration and production (E&P) drilling fluids has been sequestered in Commercial and Centralized Drilling-fluid Disposal (CCDD) sites. Commercial facilities accept on a fee basis from any operator drilling fluid and other waste allowed by their disposal permit. Centralized facilities receive spent drilling fluid from several leases held by an operator or from several sites on the same lease. Centralized facilities are noncommercial sites with no commingling of waste from other operators. The amount of spent drilling fluids sent offsite for disposal at CCDD sites has decreased from about 2 to 28 percent on a nationwide basis (Wakim, 1987a; American Petroleum Institute, 2000).

Drilling fluids used in oil and gas exploration and production (E&P) operations may be mixed with drilling additives, cuttings, formation water and crude oil. Although current regulations address the operation and closure of present-day drilling-fluid disposal sites, many older sites were operated under less comprehensive and, perhaps, less stringent regulation. As State regulations were developed for E&P waste disposal sites in the early to mid-1980s, many facilities were upgraded to be in compliance or closed by their operators, yet other sites were abandoned without proper closure. Some older sites may have received wastes other than spent drilling fluids. Without investigation of disposal sites, prediction of the quantity and character of constituents at abandoned facilities is difficult because few data compilations and summaries are available. Prediction of the quantity and character of constituents at these abandoned facilities is difficult because few compilations and summaries are available.

This study is a census, compilation, and summary of information on currently active, inactive, and abandoned CCDD sites in Louisiana, New Mexico, Oklahoma, and Texas (fig. 1). Closure of abandoned CCDD sites in these States is the jurisdiction of their regulatory agencies:

Figure 1. Commercial and centralized drilling-fluid disposal sites in the four-state study area, showing the number of inventoried CCDD sites located in each county or parish. Modified from Nance and Dutton (2002).

Louisiana Department of Natural Resources Office of Conservation (LOC); New Mexico Energy, Mineral, and Natural Resources Department Oil Conservation Division (NMEMNRD); Oklahoma Corporation Commission (OCC); and Railroad Commission of Texas (RRC). Building on the results of previous studies (Wakim, 1987a, b; American Petroleum Institute, 2000), this multistate database is intended to help address questions such as

- How many such abandoned CCDD sites are there in the four-state region?
- What is the range of concentrations of metals, salt, and hydrocarbons?
- How mobile are these contaminants, and do groundwater monitoring data show evidence of excursions of dissolved constituents?
- What is the most cost-effective approach for investigating such sites?
- What is the most cost-effective approach for site remediation?

Pooling data from these four states increases the sample of abandoned and other CCDD sites from which conclusions may be drawn.

Drilling fluid disposal sites are located within major hydrocarbon provinces. Many sites in Texas and Louisiana are located on the Gulf Coastal Plain (fig. 1), which is one of the most prolific hydrocarbon areas in the world (Bebout and others, 1982; Galloway and others, 1983; Kosters and others, 1989). Drilling-fluids delivered to CCDD sites have been deposited into mainly earthen pits that are lined with clay-rich materials whose laboratory-measured permeabilities are generally less than 10⁻⁸ cm/sec. Concerns are greatest for contamination of soils and groundwater at poorly documented sites that have been abandoned by operators, thus leaving regulatory agencies responsible for site clean-up. Better-documented sites, some of which are operating, are being assessed as potential analogs for sites where documentation is poor.

Sources of data on abandoned centralized and commercial disposal sites used in this study mainly are permit files at State regulatory agencies. Data are also included for a few non-CCDD sites that received spent drilling-fluid in addition to their primary operations. Onsite reserve pits at individual wells for disposal of spent drilling fluid are not part of this study. Examples of data from CCDD sites compiled in this study include ranges of contaminant constituents, concentration levels, and contaminant-plume characteristics, as well as hydrodynamic characteristics suggested by maps of water levels that were measured at on-site monitoring wells. Data include concentrations of (1) chloride and total petroleum hydrocarbons (TPH) in groundwater; (2) chloride, TPH, and benzene, toluene, ethylbenzene, and xylene (BTEX) in pit water; and (3) chloride, TPH, BTEX, and arsenic in sludge. Constituent concentrations are presented in the context of sufficiently documented sites.

Information compiled and analyzed in this multi-state data base on CCDD sites will provide a basis for making State-funded site assessment and remediation more cost effective and for improving regulation and remediation, especially of abandoned sites. Because data on abandoned sites are sparse, however, we also examined permitted sites that are currently operating (active) or have been closed (inactive) under State regulation. We tested the hypothesis that data from well-documented active or recently active sites could be used to predict conditions that at poorly documented abandoned sites.

CCDD sites in the four states included in the study differ both because of State regulation and industry practice as well as local and regional environmental conditions. New Mexico, for example, discourages off-site disposal of drilling waste. Off-site commercial disposal is permitted under special conditions, however, where sensitive environments would be otherwise impacted. Louisiana and Oklahoma allow no centralized pits and no commingling of drilling

waste on a noncommercial basis. Texas allows disposal of spent drilling fluid at both centralized and commercial sites.

REGULATION

Background

The 1980 Solid Waste Disposal Amendments to the Resource Conservation and Recovery Act (RCRA) exempted drilling fluids, produced water, and associated wastes from regulation as Subtitle C hazardous wastes (table 1). In 1988, the EPA confirmed the appropriateness of this exemption and decided not to recommend federal regulation of E&P wastes as hazardous wastes under Subtitle C of RCRA. The main reasons were: (1) Subtitle C does not provide flexibility to consider cost; (2) existing state and federal regulatory programs are generally adequate for controlling oil and gas wastes; (3) permitting delays would hinder oil and gas development; (4) Subtitle C regulation of these wastes could severely strain Subtitle C facility capacity; and (5) it is impractical and inefficient to implement Subtitle C for all these wastes (U.S. Environmental Protection Agency, 1988, p. 25453).

In general, E&P exempt wastes are generated in "primary field operations." Primary field operations include activities occurring at or near the wellhead and before the point where the oil is transferred from an individual field facility or a centrally located facility to a carrier for transport to a refinery. Activities include exploration, development, and the primary, secondary, and tertiary production of oil and gas. Crude oil processing, such as water separation, deemulsifying, degassing, and storage at tank batteries associated with a specific well or wells, are specific examples of primary field operations. In 1993 EPA clarified the scope of the E&P

Table 1. Oil and gas wastes exempt from RCRA hazardous waste regulation

<u> </u>	_	
Produced water		Produced sand
Drilling fluids and drill cuttings		Packing fluids
Drilling fluids and cuttings from offshore operations disposed on-shore		Spent filters, filter media, and backwash
Hydrocarbon-bearing soil	L	Piping wastes from gathering lines
Workover waste		Rigwash
Wastes from subsurface gas storage and retrieval, except for the listed non-exempt waste		Constituents removed from produced water before it is injected or otherwise disposed of
Well completion, treatment, and stimulation fluid		Materials ejected from a producing well during blowdown
Basic sediment & water and other tank bottom sludge from storage facilities that hold product and exempt waste		Gases removed from the production stream, such as hydrogen sulfide and carbon dioxide, and volatilized hydrocarbons
Pit sludge and contaminated bottoms from storage or disposal of exempt wastes		Liquid hydrocarbons remove from the production stream but not from oil refining
Pipe scale, hydrocarbon solids, hydrates, and other deposits removed from piping and equipment prior to transportation		Gas plant dehydration wastes, including glycol- based compounds, glycol filters, filter media, backwash, and molecular sieves
Waste crude oil from primary field operations and production		Liquid and solid wastes generated by crude oil and tank bottom reclaimers
Cooling tower blowdown		Light organics volatilized from exempt wastes in reserve pits or impoundments or production equipment
Accumulated materials such as hydrocarbons, solids, sand, and emulsion from production separators, fluid treating vessels, and production impoundments		Gas plant sweetening wastes for sulfur removal, including amine, amine filters, amine filter media, backwash, precipitated amine sludge, iron sponge, and hydrogen sulfide scrubber liquid and sludge

exemption for waste streams generated by crude oil and tank bottom reclaimers, oil and gas service companies, crude oil pipelines and gas processing plants and their associated field gathering lines (U.S. Environmental Protection Agency, 1993). EPA stated that certain waste streams from these operations are "uniquely associated" with primary field operations and as such are within the scope of RCRA Subtitle C exemption. EPA's clarification cautioned, however, that these wastes might not be exempt if they are mixed with non-exempt materials or wastes, listed in table 2.

Spent drilling-fluids are classified as non-hazardous wastes and are exempt from RCRA regulations. However, States included in our study have different requirements for permitting, operation, and closure of drilling-fluid disposal sites (table 3). Differences in regulatory requirements and in industry practices result in variations in the abundances of data for CCDD sites in State agency files. No Texas regulations, for example, pertain specifically to CCDD sites. Texas has no general requirement for monitoring of sites, so the most abundant data are from detailed assessment of specific sites. The OCC has abundant data on groundwater for many sites because the OCC requires that several on-site monitoring wells be installed at each site. Louisiana currently has monitoring wells installed around all land treatment sites and has an abundance of monitoring data for historical disposal-pit sites. Most sites report data for chloride and total dissolved solids (TDS) in water. There are no actionable federal regulations for chloride concentrations in drinking water. The non-enforceable aesthetic EPA secondary drinking water standard (SMCL) for chloride is 250 mg/L; the EPA definition of an underground drinking water sources specifies a limit of 10,000 mg/L in TDS (U.S. Environmental Protection Agency, 2000).

Table 2. RCRA non-exempt oil and gas waste

<u> </u>	
Unused fracturing fluids or acids	Gas plant cooling tower cleaning waste
Painting waste	Used equipment lubricating oil
Vacuum truck and drum washwater from trucks and drums transporting or containing non-exempt waste	Oil and gas service company waste, such as empty drums, drum washwater, vacuum truck washwater, sandblast media, painting waste, spent solvents, spilled chemicals, and waste acid
Waste compressor lubrication oil	Waste compressor oil, filters, and blowdown
Used hydraulic fluid	Waste solvents
Waste in pipeline-related pits	Caustic or acid cleaner
Boiler cleaning waste	Boiler refractory brick
Boiler scrubber fluid, sludge, and ash	Incinerator ash
Laboratory waste	Sanitary waste
Pesticide waste	Radioactive tracer waste
Drums, insulation, and miscellaneous solids	

Table 3. State regulatory (LAC,1999; NMOCD, 1993; USEPA, 2000) guidelines (or limits) and comparison of site-averages of waste and groundwater constituents

Solid E&P Waste (mg/kg)

			Nev	W				
Constituent	Louisiana	No.*	Mex	ico** [†]	No.*	Oklahoma'	* * ^{††}	No.*
pH	6 - 9	0		-	-			·
TDS	• · · · · · · · · · · · · · · · · · · ·	-		-	i -	-		_
Chloride	· -	, . -		-	-			· <u>-</u>
Arsenic	10	4		_	<u> </u>	- * - * - <u>-</u> *		-
Barium	20,000	6		-		- . %		-
Cadmium	10	2		-	<u>-</u>	- '.		-
Chromium	500	0				_		• -
Iron	-	· .		-		-		-
Lead	500	0			-	·		· <u>-</u>
Manganese		-		<u>.</u>	-	. -		_
Mercury	10	1		_	· 1 _ 5			-
Selenium	10	2			-	- '		·· -
Silver	200	0		-	-	. - .		_
Zinc	500	1		-	-	-		- '
TPH		-	100-5,0	000^{\ddagger}	, - .	50		11
Benzene		-		0	2	0.5		9
Ethylbenzene	<u>-</u>	_			3	15		0
Toluene		-		-	4	40		1
Xylenes	<u>-</u>	٠ -		-	1	200		0
BTEX	<u>-</u>		. 5	50	-	_		. , ,

^{*} Total number of sites in four-state study area for which data show results exceeding various standards

^{**} For hydrocarbon-contaminated soils

[†] Target levels

^{††} Action levels

Depends on proximity to water table, water sources, and surface water bodies.

Table 3 (cont.). Comparison of site-averages of waste and groundwater constituents to regulatory guidelines or limits

Groundwater (mg/L)

			EPA									
	EPA		secondary		EPA							
Constituent	MCL	No.	standard	No.*	USDW	No.*	LA	No.*	${ m NM}^{\dagger}$	No.*	OK	No.*
pН	=	-	6.5 - 8.5	0	-		-	_	6 - 9	1	<u>-</u> .	<u> -</u>
TDS	-	-	500	34	10,000	7	· -	_	1,000	28	·	-
Chloride	-	-	250	26	-	-	- '	-	250	18	- '	_
Arsenic	0.05	1	-	-	-	-	0.05	1	0.1	1	-	-
Barium	2.0	3		- ,		_	2.0	3	1.0	7	-	-
Cadmium	0.005	3	, . - .	-	· -	-	0.005	3	0.01	. 3		
Chromium**	0.1	3	_	- ,	-	-	0.18	3	0.05	2	- '	-
Iron	-	-	0.3	5		-	_	_	1.0	4		-
Lead	0.015	3	· · · -	· · · - · ·	-	-	0.015	3	0.05	6		-
Manganese	-	-	0.05	5	, -	-	-	· -	0.2	5	-	-
Mercury	0.002	1	-	-	<u>-</u> `	-	0.002	1	0.002	1	-, ,	-
Selenium	0.05	0	-	-	-	<u>-</u> '	-	-	0.05	0	_	-
Silver	0.1	0	0.1	0	, -	-	· - · · ·	-	0.05	0	-	
Zinc	-	-	5.0	2		-	1.1	3	10	1	-	
TPH	-		- ;	-	-	_	-	-	-	-	2	0
Benzene	0.005	3	-	-	-	-	0.005	3	0.01	2	0.005	3
Ethylbenzene	0.7	0	-	-	-	-	0.7	0	0.75	0	0.7	0
Toluene	1.0	0	= ' '	-	-	-	1.0	0	0.75	0	1.0	0
Xylenes	10	0	. -	-	-	-	10	0	0.62	0	10.0	0

Total number of sites in four-state study area for which data show results exceeding various standards

Cleanup levels For Louisiana, 37 mg/L for Cr⁺³ and 0.18 for Cr⁺⁶. For New Mexico, 0.05 for total chromium

Texas Regulation of Oil and Gas Drilling Wastes

Statutory authority for the RRC to regulate the oil and gas industry and protect freshwater date from 1919 with passage of a law by the Texas Legislature giving the RRC broad enforcement powers (Interstate Oil and Gas Commission, 1993). Since 1919 RRC promulgated a number of Rules for protection of environmental quality. Rule 8 addresses water protection as part of E&P operations and Rule 91 covers cleanup of soil contaminated by a crude oil spill. Rule 8 requires that any method of disposal of any oil and gas waste not authorized by rule be permitted. Senate Bill 1103 (72nd Legislature, 1991) gave the RRC additional responsibility for cleanup of abandoned disposal sites related to oil and gas exploration and development (E&P) in Texas. Rules 8 and 91 sometimes are used as guidance for abandoned CCDD sites. No specific criteria have been established in rule for closing of CCDD sites. Disposal at municipal landfills in Texas is subject to additional criteria of constituent limitations (table 4). Rules 8 and 91 do not direct that TPH or saltwater impacted media be removed from an impacted site to a permitted facility.

Rule 8 specifies chloride concentration for landfarming and burial of drilling fluid and associated cuttings authorized by rule. Generally, RRC-issued permits for CCDD sites and landfarming sites have a chloride concentration limit of 3000 mg/L. Rule 8 does not specify a generally allowable chloride concentration for drilling-fluid disposal. Rule 8 also does not specify a TPH limit for E&P waste. The RRC does not object to the disposal of oil and gas waste at a facility with an operations permit issued by the Texas Commission on Environmental Quality (TCEQ), provided the TCEQ concurs and documentation regarding the shipment of waste is submitted by the operator to the district office following the disposal (J. Hybner, 2003, written communication). The guide states that the chloride concentration is considered on a case-by-case basis and does not

Table 4. Concentration limits of certain constituents of oil and gas wastes allowed in municipal solid-waste disposal landfills in Texas

Analyte		Total limit (mg/kg)		TCLP limit (mg/L)
Benzene		10		0.5
Arsenic		36		1.8
Barium		2,000		100
Cadmium		10		0.5
Chromium	1.4	100		5.0
Lead		30		1.5
Mercury		4		0.2
Selenium		20		1
Silver		100	e e e e e e e e e e e e e e e e e e e	5
TPH		1,500		
TOX		50		·
PCBs		50		<u> </u>
Chloride		3,000		=

require a chloride concentration of less than 3000 mg/kg. In addition, oil and gas wastes disposed of in Texas' municipal landfills do not have to test for all analytes shown in table 4. For example, the 1999 guide referenced above indicates that drilling muds require testing for barium, TPH and BTEX (J. Hybner, 2003, written communication).

Rule 91 specifies TPH limits that apply to the cleanup of soil in non-sensitive areas contaminated by crude oil spills. While not applicable to CCDD sites, these limits have been mentioned for comparison in the evaluation of waste materials at CCDD sites.

Although rules do not mandate analyses of RCRA non exempt waste, Rule 98 requires a person who generates an oil and gas waste determine whether such waste is nonhazardous either through testing or process knowledge. Any permit issued for non-exempt waste requires testing to determine that a waste is nonhazardous.

Although pits may be in compliance with State regulations, operators of disposal sites may not be exempt from civil liability for waste constituents in the event of sale of the property or discharge or excursion of pit materials, including impacted groundwater, to adjacent properties. For these reasons operators often have pit wastes analyzed for constituents, especially certain metals, in addition to TPH and chloride.

INDUSTRY PRACTICES AND REGULATION

Generation of Spent Drilling Fluid

Changes in the E&P industry over the past few decades include changes in the amount and characteristics of spent drilling fluid being generated and drilling-fluid disposal practices (American Petroleum Institute, 2000). Constituents of drilling-fluid waste found in abandoned

drilling-fluid disposal sites, most of which date from the 1970s and 1980s, therefore, should be expected to differ from those of more up-to-date drilling-fluid disposal sites.

Drilling fluid pumped into a well bore has a number of functions, not least of which is removal of cuttings from subsurface formations. Much but not all of the cuttings are removed at the surface for recycling of the drilling fluid and control of its properties. When drilling efficiency or mud properties become adversely affected, the whole batch may be disposed of and replaced by new fluid. In addition to drilling mud and formation cuttings, the discarded drilling wastes may include additives, formation water and produced hydrocarbons, rig washwater including soaps and oils, and wastes from cementing operations. Most (70 to 90 percent) of drilling waste is liquid, but drilling-fluid waste constitutes the majority of the solid waste generated in oil and gas E&P operations (American Petroleum Institute, 2000).

Two main types of drilling fluid are water based and oil based muds; other synthetic muds are also used (table 5). Use of various drilling muds differs by region as well as with drilling targets. Technology of drilling mud has changed over the past few decades to meet safety and cost requirements and environmental concerns. Various materials such as saltwater and lignosulfonate may be added to control interaction between the drilling fluid and formations. Saltwater is used where it is more economical or available than freshwater, or where needed to prevent excessive borehole enlargement when drilling through salt formations. Lignosulfonate mud was the most common water-based drilling mud during the 1970s and 1980s, both for onshore and offshore drilling. Lignosulfonate is a synthetic material derived from the wood-processing industry and lignosulfonate mud was particularly effective in deep drilling under high pressures and temperatures. Lignosulfonate mud often contained several volume percent of diesel oil for lubricity and 2 to 4 weight-percent chromium for thermal stability.

Table 5. Percentage of drilling waste by mud type. From Dutton and others (2000).

	Year	Freshwater based mud	Saltwater based mud	Oil based mud	Other
U.S. average	1985	64	23	7	6
U.S. average	1995	92.5	5.5	<1.5	0.5
Louisiana	1995	93		7	
New Mexico	1995	82	16		2
Oklahoma	1995	63		37	
Texas	1995	93	7		

Oil-based (usually 6 to 10 percent diesel by volume) muds may outperform water-based muds in a number of situations: oil muds can be more stable at high temperatures, have better lubricating properties, and better protect the drill string from becoming stuck in the borehole. A more refined, less toxic petroleum oil began to replace diesel oil as an additive circa 1980. Changes in oil-mud emulsifiers, wetting agents, and viscosifiers further improved the drilling performance of the mineral-oil muds. Mineral-oil-based drilling waste was regulated the same way as diesel-oil-based drilling waste. Other constituents identified in spent drilling fluid that could pose human health and environmental risks at abandoned sites include organics, such as benzene and other volatile organic hydrocarbons; metals, such as barium, chromium, lead, and zinc; saltwater; and naturally occurring radioactive materials (NORM) from pipe scale and tank sludge.

Between 1985 and 1995 the use of saltwater-based and oil-based drilling fluid decreased nationwide (table 5). The decrease reflects improved performance of water-based and new synthetic-based drilling muds and substitution of environmentally moderate materials where feasible (American Petroleum Institute, 2000).

Total onshore footage drilled in the U. S. decreased by more than 60 percent between 1985 and 1995 (American Petroleum Institute, 2000). Volume of drilling-fluid waste probably decreased by an even greater factor because of improvements in efficiency. In 1995, about 108 million barrels of drilling waste was generated in Louisiana, New Mexico, Oklahoma, and Texas (table 6). Less than three percent of onshore drilling waste nationwide was sent offsite for disposal in 1995, for example, to commercial disposal facilities (table 6). In comparison, in 1985, more than 25 percent of drilling waste was hauled offsite for disposal (American Petroleum Institute, 2000).

Table 6. Estimated volume (thousand barrels) of disposal of solid drilling waste. From Dutton and others (2000).

	Year	Total	Burial onsite	Land spread onsite	Land spread offsite	Commercial disposal facility	Reuse or recycle	Other
U.S. total	1995	139,602	29,732	3,104	389	2,926	394	870
Louisiana	1995	22,477	4,495	899		2,922		
New Mexico	1995	7,421	965	223				
Oklahoma	1995	13,162	6,581					
Texas	1995	65,367	8,533	197	65		394	65

Regional Characteristics of CCDD Sites

In Louisiana, disposal of E&P waste by multiple operators in a centralized company-owned facility is not allowed by Statewide Order No. 29-B. The rule also says that E&P waste must be taken to a commercial facility if taken offsite for disposal. Prior to 1981 Louisiana had no Statewide regulations for disposal of drilling fluids; a succession of regulations were issued between 1982 and 1990 pertaining to drilling waste disposal facilities. Louisiana now requires pits and land-treatment cells at commercial facilities to be registered and tested before closure. Some pits must be lined to prevent seepage and contamination of ground water. If closure or land farming is not permissible because toxic or otherwise hazardous materials are present, then hauling to a certified landfill is often necessary. This is expensive, and the liability for site closure and possible ground-water contamination from that landfill could return to the disposer.

In New Mexico, most disposal of spent drilling fluid is on site; special permission is needed to move spent drilling fluid offsite. Offsite disposal is allowed where onsite disposal may affect sensitive areas or where landowner restrictions apply. Oklahoma rules do not allow the use of centralized disposal facilities; all offsite disposal is at commercial facilities. Texas allows centralized and commercial facilities to be used for disposal of spent drilling fluid in accordance with State regulations (Railroad Commission of Texas Rule 8). Pits in operation before 1984 were grandfathered into Rule 8 and are referred to as Previous Authority drilling mud pits (PA pits).

Enforcement of new or additional State regulations during the mid-1980s coincided with both a decrease in drilling activity and more efficient use of drilling fluid, resulting in a decreased need for offsite disposal of spent drilling fluid. As regulatory agencies issued more stringent regulations during the 1980s, some operators of disposal facilities chose to revamp their operations

to come into compliance with the new rules. Earthen pits were commonly used for disposal of oil-field wastes up through the mid-1980s. Some permitted sites converted their pit operations to more sophisticated land treatment or land farming facilities. Other operators chose to close their sites following conventional methods such as landspreading, dilution burial, or solidification burial, or wastes were excavated and hauled to other waste disposal facilities. In some cases, however, sites were abandoned rather than closed under State regulation, for example, following bankruptcy. State agencies did not have special funding appropriated for State-sponsored cleanup of abandoned sites until the early to mid-1990s.

Information can be limited in State regulatory agency files on abandoned sites that have not yet been closed. State inspectors may have surveyed the sites and documented the location, number, and extent of disposal pits, but analytical results of soil or water samples are generally scant. Files for sites that have been closed under State-sponsored cleanup programs document the size of sites and volume of waste, complaints and other reasons for action to close the site, and constituents found in wastes during site investigation. Information on sites that operators have closed may also include the size and number of pits that had been present and a summary of actions taken to satisfy closure requirements. Information on active permitted E&P disposal sites is the most complete, for example, containing historical correspondence, permit applications, records of waste receipts, quarterly reports of monitoring data, as well as information on enforcement and cleanup actions related to permit violations. Changes in technology and regulation mean that a typical drilling waste now being sent to permitted disposal sites is different from the waste sent to such sites during the 1970s to mid-1980s. Changes include a decreased use of oil-based and high-chromate lignosulfonate muds, as well as adherence to regulations regarding mixing NORM, hydrocarbon-rich tank-bottom sediments, and other E&P waste with spent drilling mud. Some

constituents of spent drilling mud remain the same, however, although concentrations have changed. In addition, some permitted sites also contain older spent drilling fluid. Data for active or recently permitted sites, therefore, should have some transferability to predicting constituents and soil impacts at abandoned sites.

METHODS

Data Sources and Scope of Analyses

Data were collected and tabulated for 287 CCDD sites (fig. 1; table 7) from LOC, NMEMNRD, OCC, and RRC files. Data included:

- (1) names and locations of sites;
- (2) number of pits or land-treatment cells per site;
- (3) size of disposal pits or land-treatment cells per site;
- (4) chemical analyses of pit or cell sludge, pit water, sump water (land treatment), and groundwater sampled at monitoring wells (table 8); and
- (5) groundwater elevations.

Each data type was not available for every site. The sites in our database do not compose an exhaustive list of all currently and previously operating CCDD sites, but rather are sites for which data were available during the data collection phase of our investigation.

In our survey clay-lined earthen pits were found to be the most common repositories for drilling wastes. Treatment cells from 12 CCDD land-treatment facilities were also examined (appendix A) because they provided additional data on E&P waste composition and on-site groundwater characteristics. A few sites that were permitted as salt-water disposal or oil-

Table 7. Data availability and census of CCDD sites in Louisiana, New Mexico, Oklahoma, and Texas.

Site summary

Number of sites in database:	286
Active as of January 2002:	55
Inactive as of January 2002:	197
Abandoned:	34
Disposal-pit facilities:	274
Land-treatment facilities:	12

State summary

	· · · · · · · · · · · · · · · · · · ·				Total*	
	No. of active	No. of inactive	No. of abandoned	Total no.	no. of pits or	Pit or cell area* (acres
State	sites	sites	sites	of sites	cells	$[km^2]$
Louisiana	5	13	11	29	154	581 [2.35]
New Mexico	5	2	0	7	61	609 [2.46]
Oklahoma	22	71	9	102	322	492 [1.99
Texas	22	113	14	149	253	388 [1.57]
Total	54	199	34	287	790	2,070 [8.37]

Minimum estimate pit count and pit area unspecified for all sites

Data summary

Data type	No. of sites providing data
No. of pits or cells per site	218
Area of pits or cells	215
Site map	34
Monitor-well map	21
Pit or cell sludge analyses	62
Pit or cell (sump) water analyses	75
Analyses of chemical composition of groundwater	64
Groundwater level measurements	15
Monitoring-well time series data*	24
Waste volume received**	21
Geotechnical data (liner permeability)	16
Analytical methods specified	41
Abandoned-site assessment data	22
Abandoned-site remediation data	 3

Monitor-well time-series data include records collected for \geq 2 yr Generally continuous record over several years

Table 8. Number of sites in database with records on chemical analyses of sludge, pit or sump water, or groundwater. Listed by medium and constituent.

Pit or

sump

water

0

17

.17

17

16

7

5

11

0

43

35

17

Ground-

water

2

14

14

13

13

0

5

14

3

54

44

28

Pit or cell

3

23

22

23

20

8

1

10

3.

nr

na

nr

sludge

Constituent

Ethylbenzene

VOC, SVOC

BTEX

Benzene

Toluene

Xylene

TOC

O&G

pН

TDS

Specific conductance

NORM

	Pit or cell	Pit or sump	Ground-
Constituent	sludge	water	water
Aluminum	4	3	2
Antimony	7	3	3
Arsenic	42	30	27
Barium	34	31	28
Beryllium	8	3	3
Bicarbonate	6	14	17
Boron	3	13	15
Cadmium	34	23	15
Calcium	18	20	22
Carbonate	6	12	12
Chloride	30	64	57
Chromium	42	33	26
Cobalt	2	. 3	2
Copper	10	3	4
Fluoride	1	1	1 .
Iron	9	10	5
Lead	40	25	28
Lithium	2	1	0
Magnesium	17.	29	22
Manganese	8	7	5
Mercury	33	23	11
Molybdenum	2	1	0
Nickel	9	3	3
Nitrogen	3	15	17
Palladium	1	1	0
Phosphorus	2	. 1	0
Potassium	11	15	16
Rubidium	1	1	0
Selenium	33	17	11
Silver	31	22	9
Sodium	17	26	35
Strontium	2	1	1
Sulfate	10	18	22
Thallium	5	2	2
Thorium	1	1	. 0
Tin	2	3	1
Titanium	2	1	1
Uranium	1	1	0
Vanadium	4	3	2
Zinc	25	20	21
Zirconium	1	: 1	0
TPH	22	16	5
nr - not reported; na -	not appli	cable	

reclamation facilities were also included where drilling fluid waste was identified on the site. There also are some data where drilling fluids had been discharged at an unauthorized site.

Standard laboratory procedures (U.S. Environmental Protection Agency, 1983, 1986; ALPHA-AWWA-WPCF, 1985) were found referenced in data reports, although many data reports contained no reference to analytical method. Reports that did not specify analytical methodologies might have applied standard procedures. We assumed that data from different sites can be compared regardless of analytical method.

The multi-state database contains information about the composition and distribution of constituents that can be mapped (appendix B). Most State files do not contain mapped data, but mapping of monitoring data provides a useful picture to show how site conditions vary through time. Data on water levels from site monitoring wells also were mapped as part of this analysis. Also, we obtained data on soil contamination outside of disposal areas or treatment cells only for two sites; findings, therefore, apply only to on-site conditions. Data were reported most commonly for dissolved chloride or TDS or both. We compared average constituent concentrations calculated for sites in the database with various State and EPA standards and guidelines.

Agency files also contain information on practices for site assessment and remediation of abandoned CCDD sites. There have been a number of recent or ongoing investigations at abandoned sites by the States: 9 in Louisiana, 10 in Oklahoma, and 11 in Texas. We identified no records of abandoned CCDD sites in New Mexico. RRC maintains a list of oil and-gas E&P sites in Texas that are or have been under investigation was provided by the RRC; but it did not distinguish CCDD from other types of sites. The count of abandoned CCDD sites in Oklahoma and Texas was compiled from information in agency files.

Limitations of CCDD Data

CCDD site data are generally limited to areas along and within site boundaries. This renders limits critical interpretations of constituent migration away from sites, or the recognition of off-site constituent sources. It is not possible to demonstrate from site data alone, in most cases, whether a source of constituents is on site or off site. Second, detailed stratigraphic control in on-site monitoring wells is generally lacking; maps of constituent gradients, therefore, may not completely capture complexities of constituent-plume structure that are sensitive to stratigraphy. Situations where constituent plumes have migrated to depths greater than the completion depths of monitoring wells, or where constituents may be concentrated within discrete strata, may go undetected. Third, samples of pit sludge are routinely collected on a regular grid but are then composited prior to analysis. Similarly, entire borings from individual sample locations may be composited. These practices yield a mean concentration value for the whole pit or boring, respectively. This practice can disguise the occurrences of locally extreme concentrations, although average values may be useful for evaluating remediation techniques.

Although chemical analytical data provide a basis for evaluating the potential or actual environmental impact of drilling fluid disposal at CCDD sites, data also should be evaluated for reliability. One simple test (figs. 2a-d) that reveals potential deficiencies in reported data is a comparison of chloride and TDS. For example, chloride concentration generally varies directly with TDS (figs. 2a and b) and chloride generally makes up the largest fraction of TDS. A gross deviation from concentration ratios in a ranked list of chloride and TDS values, therefore, is a flag that data should be examined more closely (figs. 2c and d). Samples where chloride values exceed TDS values (e.g., fig. 2c) include error.

Figure 2. Chloride and TDS trends in groundwater for selected CCDD sites. Arithmetic (left hand and middle columns) and semi-log plots (right hand columns for trends are shown for comparison. (a) and (b) show expected close correspondence between trends; (c) and (d) show more irregular correspondences between trends. Analyses where chloride is greater than TDS (e.g., (c)) indicate analytical or other errors.

In spite of such limitations, these data appear to illustrate commonalties between most investigated sites and compose a set of examples from which insights can be generated regarding potential contamination at poorly-documented sites. Notably, some sites in the current database have shown concentrations of chloride in sludge and fluids well in excess of 3,500 mg/L. Accumulations of petroleum-related components at some sites were sufficiently high to have warranted regulatory attention in some cases.

Products generated during this investigation are, to varying extents, interpretative. For example, the sizes of some pits are based on rough sketches found in files. Maps, although constrained by data, are also necessarily interpretations because data is spatially limited. The maps in this report are offered as reasonable interpretations of data but are not necessarily the only possible interpretations.

RESULTS AND DISCUSSION

Census of CCCD Sites

The database compiled in this study includes 287 active, inactive, and abandoned CCDD sites in the four State area (fig. 1; table 7). The database indicates more than 790 individual pits whose cumulative areal coverage exceeds 2000 acres. The number of reported pits per site ranges from 1 to 25 (fig. 3). The number of pits for 23 percent of sites is unreported. Ninety-two percent of the remaining sites contain fewer than 9 pits; 46 percent of reported sites contain only one pit (fig. 3). The smallest pit at a single-pit site covers 13.9 m² (150 ft²), whereas the largest site includes nine pits with a cumulative coverage of 0.88 km² (~217 acres) (fig. 4). Twenty-six percent of sites reported no data on areal coverage for pits.

Figure 3. Cumulative (a) and frequency (b) graphs of numbers of pits per CCDD site in the database compiled to date.

Figure 4. Cumulative (a) and frequency (b) graphs of areal coverage of pits per CCDD site in the database compiled to date.

Distribution Patterns of Constituents and Water Levels

File data show three basic hydrologic attributes of CCDD sites. The first attribute is the gradient interpreted from mapped constituent concentrations. Chemical gradients in plumes in groundwater suggest that constituents may leak from pits and migrate through soil and shallow aquifers. The second attribute is the inhomogeneous distributions of constituents in sludge, as evidenced at the few well documented sites. Pre-analysis compositing of multiple samples may not reveal the range in constituent concentration. The third attribute is that on-site water levels are complexly distributed and can include on-site mounding. Distributions of water levels and mounding suggest that flow paths may be complex and that disposal pits may act as focal points for groundwater recharge.

Chemical Data

CCDD sites are potential sources of inorganic and organic contamination to soils and groundwater. Constituents from sludge and fluids may percolate through the floor of an unlined pit or cell into shallow aquifers, or overflow berms and infiltrate soils outside of the permitted disposal area. Sludge solids may also provide leachable sources of constituents to shallow aquifers.

Chemical analyses of pit or cell contents, therefore, provide a list of potential constituents that could leach to adjacent soil and groundwater. Groundwater chemical data provides information on the integrity of pits or land-treatment cells (for example, landfarm cells), and on the fate of contaminated groundwater. Most State-permitted CCDD sites have been limited to accepting only water-based drilling fluids with chloride concentrations of <3,500 mg/L (Interstate Oil and Gas Commission, 1992, 1993, 1994). Oil and grease concentrations are generally limited to one percent

or less in admixtures with soils at CCDD sites where land treatment is utilized. Sites used prior to establishment of current permitting requirements may not have observed these limits.

Agency files contain a variety of chemical data from analyses of waste solids (sludge), interstitial and freestanding liquids, and groundwater from on-site monitoring wells. Site-specific data for some sites includes only analyses for one constituent (usually chloride in groundwater). Data for other sites may include a comprehensive suite of inorganic and organic analyses of pit contents and groundwater. Although chemical analytical methodologies were not documented on lab reports in agency files from most of the sites, procedures were documented for 36 of the sites in the database. Methodologies specified EPA-approved methods including U.S. Environmental Protection Agency (1983, 1986) and (ALPHA-AWWA-WPCF, 1985).

Ranges, Medians, and Means of Constituent Concentrations

Figure 5 and table 9 report the statistical distribution among reporting sites of analytical values for several constituents. Applicable plots from figure 5 are also used as a basis for comparison for constituent data compiled for individual sites. Reported concentrations are mean values for specified constituents calculated at each documented site. Means represent as few as one value for a few sites to more than 100 values. All available data from sites showing detectable concentrations of specific constituents were used in statistical calculations. Concentrations reported to be below detection limits were not included in statistical calculations (i.e., values of zero were not used in calculation of the mean or median). Analytical values variously represent time-dependent measurements from one or more sample locations (for example, 10 measurements from one monitoring well collected over a time period), to one or more samples collected from numerous locations at a site (for example, one measurement taken at each of ten monitoring wells at a site).

Figure 5. Cumulative and frequency graphs for selected constituents in groundwater and disposal pit contents: (a) chloride in groundwater, (b) TPH in groundwater, (c) chloride in sump water, (d) TPH in pit water, (e) BTEX in sump water, (f) chloride in sludge, (g) TPH in sludge, (h) BTEX in sludge, (i) arsenic in sludge, and (j) barium in sludge. Applicable plots are used (Figs. 6-37) as bases for comparison of individual sites with all sites in the database.

Table 9. Comparison between authorized and abandoned sites for site-average concentrations of constituents in pit sludge and groundwater. Boldface type indicates average is greater than maximum average for active and inactive sites.

Pit Sludge (mg/kg except pH)

		Active and inactive sites				Abandoned sites				
COC	No.	Range	Max	κ Ave	No.	Ra	nge	Ma	ax Ave.	
pН		NA	N	JA	·	N	J A		NA	
TDS	-	NA	. · · · N	JA	-	N	IA		NA	
Arsenic	23	ND-49.3		49.3	19	ND	-15.5	1	5	
Barium	15	0.05-105,975	. 10	05,975	19	0.5-1	62,750	162,75	50	
Cadmium	15	ND-11.27		11.27	19	ND)- 4.5		4.5	
Chloride	18	4-41,504	4	41,504	11	36-6	5,007	6,00)7	
Chromium	22	ND-139.7		139.7	20	ND	-286	28	86	
Lead	20	ND-145.4		145.40	20	ND-	176.2	17	6.2	
Mercury	17	ND-271	1. 1	271	15	ND)- 2.1		2.1	
Selenium	15	ND-68.01		68.01	18	ND	-39.7	3	9.7	
Silver	16	ND-1.913		1.913	15	ND)- 5.5		5.5	
Zinc	10	ND-1,382		1,382	15	ND	-842	84	12	
TPH	7	< 0.0002-3.246		3.246	16	ND-4	10,329	40,32	29	
BTEX	1	0.158		0.158	3	6.5-	-25.1	. 2	25.1	
Benzene	13	< 0.0002-14.6		14.6	9	ND)-2.1		2.1	
Toluene	13	ND-46.6		46.6	8	ND-	1,071		1.071	
Ethylbenzene	13	ND-22.4		22.4	9	ND) -3.1		3.1	
Xylene	9	0.0002-28		28	12	ND	-15.5	1	5.5	

Groundwater (mg/L except pH)

	Active and inactive sites			Abandoned sites				
COC	No.	Range	Max Ave	No.	Range	Max Ave.		
pН	45	6.7-12.2	12.2	9	6.2-8.1	8.1		
TDS	35	9-33,658	33,658	9	130-18,730	18,730		
Arsenic	18	ND-0.14	0.14	9	< 0.005-0.02	0.02		
Barium	19	0.22-2.4	2.4	9	0.073-3.6	3.6		
Cadmium	6	0.003-5	5	9	< 0.005-0.025	0.025		
Chloride	47	7-54247	54,247	10	125-13,859	13,859		
Chromium	18	ND-16	16	8	< 0.005-0.235	0.235		
Lead	19	ND-0.49	0.49	9	< 0.005-0.24	0.24		
Mercury	3	<0.0001-0.09	0.09	8	< 0.0005-0.002	0.002		
Selenium	3	ND-0.104	0.104	8	<0.001-<0.1	< 0.1		
Silver /	2	< 0.002-0.003	0.003	7	<0.005-<0.02	< 0.02		
Zinc	16	0.01-95.6	95.6	.5	0.04-0.24	0.24		
TPH	3	0.043-0.138	0.138	. 2	ND-0.138	0.138		
BTEX	0	NA	NA	2	ND-0.025	0.025		
Benzene	11	ND-0.926	0.926	3	ND-0.019	0.019		
Toluene	11	ND-0.557	0.557	3	ND-0.031	0.031		
Ethylbenzene	11 .	ND-0.194	0.194	2	ND-0.004	0.004		
Xylene	11	ND-0.082	0.082	2	ND-0.023	0.023		

No. - Number of sites in database for which indicated analyses were available

NA – Not available

ND – Not detected

The distribution among CCDD sites of concentrations shown for specific constituents in figure 5 and table 9 span several orders of magnitude. Ranges of mean values are greatest for barium in sludge (fig. 5i), with a ratio of 2.1 million between the highest and lowest sludge barium average values, and are smallest for chloride in pit water, with a ratio of 7.3 thousand between the highest and lowest value. The constituent list in order of decreasing *range* (in terms of the ratio of the largest site-mean to the smallest site-mean) is:

- (1) barium in sludge,
- (2) BTEX in pit or sump water,
- (3) arsenic in sludge,
- (4) TPH in pit or sump water,
- (5) chloride in sludge,
- (6) TPH in sludge,
- (7) chloride in groundwater,
- (8) TPH in groundwater,
- (9) BTEX in sludge, and
- (10) chloride in pit or sump water.

Values at the upper limit of constituent concentration cause mean-concentration values to be significantly higher than median-concentration values for the same constituents. Divergence between mean and median values is greatest for barium in sludge (fig. 5i) with a ratio of 246:1 between the mean and median. Divergence is smallest for arsenic in sludge (fig. 5j) with a ratio of 2:1 between the mean and median. Arranged in order of decreasing *divergence between mean and median values* the constituent list becomes:

(1) barium in sludge,

- (2) TPH in pit water,
- (3) TPH in groundwater,
- (4) TPH in sludge,
- (5) BTEX in sludge,
- (6) chloride in groundwater,
- (7) chloride in sludge
- (8) BTEX in pit water,
- (9) chloride in pit water, and
- (10) arsenic in sludge.

CCDD Site-specific Data

The following section presents graphical information for 33 drilling-fluid disposal sites for which sufficient information was available to produce maps of chloride distributions in groundwater. For 13 of these sites mappable water-level data were also available. Data for all constituents (depicted on histograms) were not available for every site. Similarly, time-dependent data, such as presented for two sites, was not available for every site.

Louisiana Sites

Bateman Island Site

The Bateman Island (fig. 6) is a landfarm near Bayou Boeuf in St. Mary's Parish,

Louisiana. Drilling fluid wastes are treated in cells and then spread in a regulated manner over the
landscape. The site consists of 15 treatment cells with a cumulative areal coverage of
approximately 0.3 km² (3.4 million ft²) and has 20 monitoring wells located within the site and

Figure 6. Bateman Island site, St. Mary's Parish, Louisiana: maps show (a) distribution of chloride in groundwater, and (b) water levels Histograms show (c) mean chloride in groundwater, (d) mean total petroleum hydrocarbons in groundwater, (e) mean chloride in pit water, (f) mean BTEX in pit water, (g) mean BTEX in pit sludge, (h) mean barium in pit sludge. Histograms in (c) to (h) for all sites in the study sample (fig. 5). Star (*) indicates mean for the Bateman Island site. Mean concentration for site in parentheses.

along its perimeter. Comparisons of the Bateman Island site to all the other sites for chloride and TPH in groundwater; TPH and BTEX in sump water; and BTEX and barium in sludge are shown in figures 6 c-h. Distributions of chloride values in groundwater (fig. 6a) show local maximum concentrations (1,250 to over 2000 mg/L) in the east and north, near the margins of the site. These values exceed the SMCL for chloride in drinking water (250 mg/L). Chloride values may reflect the presence of two chloride plumes whose sources appear to be near the margins of the site where chloride values show local maximums. However, lack of off-site background chloride data precludes determination of an on-site chloride source. The water-level map (fig. 6b) shows mounding in the northern and southern corners of the site.

Big Diamond Site

Big Diamond site (fig. 7) is near Black Bayou in Cameron Parish, Louisiana. The site consists of five pits with a cumulative areal coverage of approximately 0.1 km² (1.42 million ft²) and has 12 monitoring wells located along its perimeter. Comparisons of Big Diamond site to all the other sites for chloride in groundwater, chloride in pit water, TPH in sludge, and barium in sludge are shown in figures 7 c-f. Distributions of chloride values in groundwater (fig. 7a) show local maximum concentrations (5,000 to over 10,000 mg/L) in the south and northeast parts of the site, respectively. These values exceed the SMCL for chloride in drinking water (250 mg/L) and the high reported value exceeds the EPA's salinity limits (10,000 mg/L TDS) for an underground source of drinking water (USDW). Chloride values may reflect the presence of two chloride plumes whose sources appear to be near the margins of the site where chloride values show local maximums. However, lack of off-site background chloride data precludes determination of an onsite chloride source. The water-level map (fig. 7b) shows mounding in the northern part of the site.

Figure 7. Big Diamond site, Cameron Parish, Louisiana: maps show (a) distribution of chloride in groundwater and (b) water levels. Histograms show (c) mean chloride in groundwater, (d) mean chloride in pit water, (e) mean TPH in pit sludge, (f) mean barium in pit sludge at CCDD sites. Histograms in (c) to (f) for all sites in the study sample (fig. 5). Star (*) indicates mean for the Big Diamond site. Mean concentration for site in parentheses.

Bourg Site

The Bourg site (fig. 8) is on Louisiana State Highway 24 near Bayou Blue and St. Louis

Canal in Lafrouche Parish, Louisiana. The site consists of 18 treatment cells with a cumulative areal coverage of approximately 0.3 km² (3.42 million ft²) and has 14 monitoring wells located within the site and along its perimeter. Comparisons of the Bourg site to all the other sites for chloride in groundwater, TPH in groundwater, TPH in sump water, and barium in sludge are shown in figures 8 c-f. Distributions of chloride values in groundwater (fig. 8a) show local maximum concentrations (2,000 to over 2,250 mg/L) in the north and southeast parts of the site, respectively. These values exceed the SMCL for chloride in drinking water (250 mg/L). Notably, distributions of chloride values in groundwater define a low in chloride near the center of the site that corresponds to the location of a water-level maximum (fig. 8b). Correspondence of low chloride with the center of a groundwater mound suggests that constituents may be flushed toward the perimeter of the site by radial flow away from the center of the mound. However, lack of off-site background chloride data precludes determination of an on-site chloride source.

Elm Grove Site

The Elm Grove site (fig. 9) is in Bossier Parish, Louisiana. The site consists of ten treatment cells with a cumulative areal coverage of approximately 0.1 km² (1.35 million ft²) and has six monitoring wells located along its perimeter. Comparisons of the Elm Grove site to all the other sites for chloride and TPH in groundwater, TPH in sump water, and TPH and barium in sludge are shown in figures 9 b-f. Distributions of chloride values in groundwater (fig. 9a) show local maximum concentrations (over 300 mg/L) in the north part of the site and may define a plume with a north-northwest to south-southeast axis. These values exceed the SMCL for chloride in drinking

Figure 8. Bourg site, Lafrouche Parish, Louisiana: maps show (a) distribution of chloride in groundwater, and (b) water levels. Histograms show (c) mean chloride in groundwater, (d) mean TPH in groundwater, (e) mean TPH in sump water, and (f) mean barium in sludge. Histograms in (c) to (f) for all sites in the study sample (fig. 5). Star (*) indicates mean for the Bourg site. Mean concentration for site in parentheses.

Figure 9. Elm Grove site, Bossier Parish, Louisiana: map shows (a) distribution of chloride in groundwater. Histograms show (b) mean chloride in groundwater, (c) mean TPH in groundwater, (d) mean TPH in sump water, (e) mean TPH in sludge, and (f) mean barium in sludge. Histograms in (b) to (f) for all sites in the study sample (fig. 5). * mean for the Elm Grove site, mean concentration in parentheses.

water (250 mg/L). However, lack of off-site background chloride data precludes determination of an on-site chloride source.

Laccassine Site

The Laccassine site (fig. 10) is in Jefferson Davis Parish, Louisiana. The site consists of 11 treatment cells with a cumulative areal coverage of approximately 0.6 km² (5.95 million ft²) and has nine monitoring wells located along its perimeter. Comparisons of the Laccassine site to all the other sites for chloride in groundwater and sump water, and TPH in sludge are shown in figures 10 b-d. Distributions of chloride values in groundwater (fig. 10a) show local maximum concentrations (over 600 and 900 mg/L) in the southeast and southwest parts of the site, respectively, and may define two separate plumes, each apparently emanating from the locations of local maximum chloride concentrations. These values exceed the SMCL for chloride in drinking water (250 mg/L). However, lack of off-site background chloride data precludes determination of an on-site chloride source.

Lafrouche Site

The Lafrouche site (fig. 11) is in Lafrouche Parish, Louisiana. The site consists of five treatment cells with a cumulative areal coverage of approximately 0.1 km² (1.31 million ft²) and has 15 monitoring wells located within the site and along its perimeter. Comparisons of the Lafrouche site to all the other sites for chloride and TPH in groundwater are shown in figures 11 b-c. Distributions of chloride values in groundwater (fig. 11a) show local maximum concentrations (over 400-500 mg/L) in four separate locations, and may define four separate plumes, each apparently emanating from the locations of local maximum chloride concentrations in groundwater.

Figure 10. Laccassine site, Jefferson Davis Parish, Louisiana: map shows (a) distribution of chloride in groundwater. Histograms show (b) mean chloride in groundwater, (c) mean chloride in sump water, and (d) mean TPH in sump water. Histograms in (b) to (d) for all sites in the study sample (fig. 5). Star (*) indicates mean for the Laccassine site. Mean concentration for site in parentheses.

Figure 11. Lafrouche site, Lafrouche Parish, Louisiana: map shows (a) distribution of chloride in groundwater. Histograms show (b) mean chloride in groundwater, and (c) mean TPH in groundwater. Histograms in (b) and (c) for all sites in the study sample (fig. 5). Star (*) indicates mean for the Lafrouche site. Mean concentration for site in parentheses.

These values exceed the SMCL for chloride in drinking water (250 mg/L). However, lack of off-site background chloride data precludes determination of an on-site chloride source.

MAR Site

The MAR site (fig. 12) is near Bayou Carancro and Coulee Croche in St. Landry Parish. Louisiana. The site consists of four treatment cells with a cumulative areal coverage of approximately 0.1 km² (1.3 million ft²) and has 14 monitoring wells located within the site and along its perimeter. The site also includes a centrally located saltwater injection well. Comparisons of the MAR site to all the other sites for chloride in groundwater, TPH in groundwater, and TPH in sump water are shown in figures 12 c-e. Distributions of chloride values in groundwater (fig. 12a) show locally very high concentrations (over 25,000 mg/L) in the northwest and southeast parts of the site, and appear to define two separate plumes, each emanating from the locations of local maximum chloride concentrations. These values exceed the SMCL for chloride in drinking water (250 mg/L) and the high reported value exceeds the EPA's salinity limits (10,000 mg/L TDS) for an underground source of drinking water (USDW). However, lack of off-site background chloride data precludes determination of an on-site chloride source. None of the origins of higher salinity appear associated with the injection well. The water-level map (fig. 12b) shows a decrease in water levels, and thus a potential for flow, toward the site-bounding bayou and coulee. Corresponding plume gradients and water levels distributions may reflect discharge of chloride-enriched groundwater toward the two waterways.

Mermentau Site

The Mermentau site (fig. 13) is in Jefferson Davis Parish, Louisiana. The site consists of 25 treatment cells with a cumulative areal coverage of approximately 0.4 km² (4.7 million ft²) and has

Figure 12. Mar site, St. Landry Parish, Louisiana: maps show (a) distribution of chloride in groundwater, and (b) water levels Histograms show (c) mean chloride in groundwater, (d) mean TPH in groundwater, and (e) mean TPH in sump water. Histograms in (c) to (e) for all sites in the study sample (fig. 5). Star (*) indicates mean for the MAR site. Mean concentration for site in parentheses.

Mermentau Site Jefferson Davis Parish, Louisiana

Figure 13. Mermentau site, Jefferson Davis Parish, Louisiana: maps show (a) distribution of chloride in groundwater, and (b) water levels. Histograms show (c) mean chloride in groundwater, (d) mean TPH in sump water, (e) mean TPH in sludge, and (f) mean barium in sludge. Histograms in (c) to (f) for all sites in the study sample (fig. 5). Star (*) indicates mean for the Mermentau site. Mean concentration for site in parentheses.

17 monitoring wells located within the site and along its perimeter. Comparisons of the Mermentau site to all the other sites for chloride in groundwater, TPH in sump water, TPH in sludge, and barium in sludge are shown in figures 13 c-f. A locally very high concentration (almost 20,000 mg/L) occurs in the south-central part of the site (fig. 13a). The area within the 1,000-mg/L contour suggests the presence of a plume that is similar in shape to the area that contains the main group of pits and originates in the south-central part of the site. These values exceed the SMCL for chloride in drinking water (250 mg/L) and the high reported value exceeds the EPA's salinity limits (10,000 mg/L TDS) for an underground source of drinking water (USDW). However, lack of off-site background chloride data precludes determination of an on-site chloride source. The water-level map (fig. 13b) shows local mounding in the east and west parts of the site.

Reliable Site

The Reliable site (fig. 14) in Pointe Coupee Parish, Louisiana. The site consists of four treatment cells with a cumulative areal coverage of approximately 0.1 km^2 (1.1million ft²) and has ten monitoring wells located within the site and along its perimeter. Comparisons of the Reliable site to all the other sites for chloride in groundwater, TPH in groundwater, chloride in sump water, and TPH in sump water are shown in figures 14 c-f. Distributions of chloride values in groundwater (fig. 14a) show a local maximum concentration (over 450 mg/L) in the southwestern part of the site and may define a plume that is concentrated in the southern part of the site and is elongate along an east-west axis. These values exceed the SMCL for chloride in drinking water (250 mg/L). However, lack of off-site background chloride data precludes determination of an on-site chloride source. The water-level map (fig. 14b) shows local mounding in the west-central part of the site.

Figure 14. Reliable site, Pointe Coupee Parish, Louisiana: maps show (a) distribution of chloride in groundwater, and (b) water levels. Histograms show (c) mean chloride in groundwater, (d) mean TPH in groundwater, (e) mean chloride in sump water, and (f) mean TPH in sump water. Histograms in (c) to (f) for all sites in the study sample (fig. 5). Star (*) indicates mean for the Reliable site. Mean concentration for site in parentheses.

Waguespack Site

The Waguespack site (fig. 15) is near Bayou Petite Anse in Iberia Parish, Louisiana. The site consists of seven pits with a cumulative areal coverage of approximately 0.04 km² (447,000 ft²) and has eight monitoring wells located within the site and along its perimeter. Comparisons of the Waguespack site to all the other sites for chloride in groundwater and pit water are shown in figures 15c-d. Distributions of chloride values in groundwater (fig. 15a) show a local maximum concentration (over 600 mg/L) in the northern part of the site and appear to define a plume that is concentrated in the northern part of the site and has lobes extending toward the south and east. These values exceed the SMCL for chloride in drinking water (250 mg/L). However, lack of offsite background chloride data precludes determination of an on-site chloride source. The Waguespack example demonstrates the shortcomings of evaluating a site with monitoring wells distributed around its perimeter; an off-site source could produce the distribution of chloride concentrations. However, the water-level map (fig. 15b) shows local mounding in the east-central part of the site. Implied flow is toward the north and south perpendicular to the steeper gradients, which can explain freshening of groundwater in those directions and maintenance of higher concentrations of on-site originated chloride beneath the west-northwest-trending mound axis.

New Mexico Sites

CRI Halfway Site

The CRI Halfway site (fig. 16) is near Laguna Plata in Lea County, New Mexico. The site consists of at least two pits with a cumulative areal coverage of approximately 1.1 km² (11.32 million ft²) and has six monitoring wells located within the site and along its perimeter.

Comparisons of the CRI Halfway site to all the other sites for chloride in groundwater, BTEX in

Figure 15. Waguespack site, Iberia Parish, Louisiana: maps show (a) distribution of chloride in groundwater, and (b) water levels. Histograms show (c) mean chloride in groundwater, and (d) mean chloride in pit water. Histograms in (c) and (d) for all sites in the study sample (fig. 5). Star (*) indicates mean for the Waguespack site. Mean concentration for site in parentheses.

CRI Halfway Site Lea County, New Mexico

Figure 16. CRI Halfway site, Lea County, New Mexico: maps show (a) distribution of chloride in groundwater, and (b) water levels (map from agency files). Maps show (c) mean chloride in groundwater, (d) mean BTEX in pit sludge, and (e) mean barium in pit sludge. Histograms in (c) to (e) for all sites in the study sample (fig. 5). Star (*) indicates mean for the CRI Halfway site. Mean concentration for site in parentheses.

sludge, and barium in sludge are shown in figures 16c-e. Distributions of chloride values in groundwater (fig. 16a) show a locally very high concentration (over 130,000 mg/L) in the southeastern part of the site and may define a plume that is concentrated in the southeastern part of the site and is elongate along a northwestern-trending axis. These values exceed the SMCL for chloride in drinking water (250 mg/L) and the high reported value exceeds the EPA's salinity limits (10,000 mg/L TDS) for an underground source of drinking water (USDW). However, lack of offsite background chloride data precludes determination of an on-site chloride source. The regional water-level map (fig. 16b) covers an area about 15 times larger than the site and depicts local groundwater mounding over the sight.

Oklahoma Sites

Bluff Site

The Bluff site (fig. 17) is in Major County, Oklahoma. The site consists of two pits with a cumulative areal coverage of approximately 0.06 km² (613, 000 ft²) and has ten monitoring wells located within the site and along its perimeter. The site also contains an injection well.

Comparisons of the Bluff site to all the other sites for chloride in groundwater and TPH in sludge are shown in figures 17b and c. Distributions of chloride values in groundwater (fig. 17a) show a locally very high concentration (over 60,000 mg/L) in the northeastern part of the site and may define a plume that is concentrated in the northeastern part of the site and is elongate along a southwestern-trending axis. These values exceed the SMCL for chloride in drinking water (250 mg/L) and the high reported value exceeds the EPA's salinity limits (10,000 mg/L TDS) for an underground source of drinking water (USDW). However, lack of off-site background chloride data

Figure 17. Bluff site, Major County, Oklahoma: (a) map shows distribution of chloride in groundwater. Histograms show (b) mean chloride in groundwater, and (c) mean TPH in pit sludge at CCDD sites. Histograms in (c) for all sites in the study sample (fig. 5). Star (*) indicates mean for the Bluff site. Mean concentration for site in parentheses.

precludes determination of an on-site chloride source. Chloride distributions show no influence of the injection well.

FPC Site

The FPC site (fig. 18) is in Canadian County, Oklahoma. The site consists of five pits with a cumulative areal coverage of approximately 0.04 km² (446,000 ft²) and has five monitoring wells located within the eastern half of the site. The time-series graph of chloride concentrations measured at each monitoring well indicates that different wells receive peak concentrations of chloride at different times (fig. 18b). Comparisons of the FPC site to all the other sites for chloride in groundwater, TPH in groundwater, chloride in pit water, and barium in sludge are shown in figures 18c-f. Distributions of chloride values in groundwater (fig. 18a) show a maximum value (>400 mg/L) in the west-central part of the site and may define a relatively symmetrical plume that radiates from the location of maximum chloride concentration. These values exceed the SMCL for chloride in drinking water (250 mg/L). However, lack of off-site background chloride data precludes determination of an on-site chloride source.

Gowen Site

The Gowen site (fig. 19) is near Pit Creek along US Highway 270 in Latimer County,

Oklahoma. The site consists of one recorded pit with a cumulative areal coverage of approximately

0.001 km² (12,300 ft²). Figure 19a shows seven other pits of unknown status that are in the area.

Eleven monitoring wells are located within a mile of the Gowen site. Comparisons of the FPC site to all the other sites for chloride in groundwater and pit water, and barium in sludge are shown in figures 19b-d. Distributions of chloride values in groundwater (fig. 19a) show a maximum value

Figure 18. FPC site, Canadian County, Oklahoma: map shows (a) distribution of chloride in groundwater. (b) Time-series plot of chloride in groundwater by monitoring wells. Histograms show (c) mean chloride in groundwater, (d) mean TPH in groundwater, (e) mean chloride in pit water, and (f) mean barium in pit sludge. Histograms in (c) to (f) for all sites in the study sample (fig. 5). Star (*) indicates mean for the FPC site. Mean concentration for site in parentheses.

Figure 19. Gowen site, Latimer County, Oklahoma: (a) map shows distribution of chloride in groundwater. Histograms show (b) mean chloride in groundwater, (c) mean chloride in pit water, and (d) mean barium in pit sludge. Histograms in (b) to (d) for all sites in the study sample (fig. 5). Star (*) indicates mean for the Gowen site. Mean concentration for site in parentheses.

(>110 mg/L) about a mile east-northeast of the site with lower values (<30 mg/L) near the site. These data do not suggest that the Gowen site is a source of chloride contamination in the area.

Guard Site

The Guard site (fig. 20) is in Major County, Oklahoma. The site consists of three pits with a cumulative areal coverage of approximately 0.1 km² (1.22 million ft²) and has seven monitoring wells located within and along the perimeter of the site. Comparisons of the Guard site to all the other sites for chloride and TPH in groundwater are shown in figures 20b and c. Distributions of chloride values in groundwater (fig. 20a) show a maximum value (>20,000 mg/L) in the southwestern part of the site and may define a plume that is elongate toward the north, with an associated lobe that extends toward the east across the middle of the site. These values exceed the SMCL for chloride in drinking water (250 mg/L) and the high reported value exceeds the EPA's salinity limits (10,000 mg/L TDS) for an underground source of drinking water (USDW). However, lack of off-site background chloride data precludes determination of an on-site chloride source.

Kelly Site

The Kelly site (fig. 21) is in McClain County, Oklahoma. The site consists of five pits with a cumulative areal coverage of approximately 0.2 km² (1.8 million ft²) and has several as yet unmapped monitoring wells. Comparisons of the Kelly site to all the other sites for chloride in groundwater and pit water, BTEX in pit water, TPH in sludge, BTEX in sludge, arsenic in sludge, and barium in sludge are shown in figures 21c-i. Samples of pit sludge were collected on a regular grid across the site and were not composited prior to analysis. The distributions of TPH and arsenic in sludge are shown in figures 21a and b. These distributions show that Kelly pit sludge is not

Figure 20. Guard site, Major County, Oklahoma: (a) map shows distribution of chloride in groundwater. Histograms show (b) mean chloride in groundwater, and (c) mean TPH in groundwater. Histograms in (b) and (c) for all sites in the study sample (fig. 5). Star (*) indicates mean for the Guard site. Mean concentration for site in parenthesis.

Figure 21. Kelly site, McClain County, Oklahoma: maps show (a) distribution of TPH in pit sludge, (b) Distribution of arsenic in pit sludge. Histograms show (c) mean chloride in groundwater, (d) mean chloride in pit water, (e) mean BTEX in pit water, (f) mean TPH in pit sludge, (g) mean BTEX in pit sludge, (h) mean arsenic in pit sludge, and (i) mean barium in pit sludge. Histograms in (c) to (i) for all sites in the study sample (fig. 5). Star (*) indicates mean for the Kelly site. Mean concentration for site in parentheses.

homogeneous and that very high concentrations of TPH (>20,000 mg/kg) and elevated concentrations of arsenic (>6 mg/kg) are present locally.

Merkle Site

The Merkle site (fig. 22) is located in Pottawatomie County, Oklahoma. The site consists of 12 pits with a cumulative areal coverage of approximately 0.03 km² (293,000 ft²) and has six monitoring wells located in pairs at the northwest and northeast corners and at the east- central margin of the site. Comparisons of the Merkle site to all the other sites for chloride and TPH in pit water, and TPH and barium in sludge are shown in figures 22b-f. The distributions of chloride values in groundwater (fig. 22a) show maximum concentrations (>150 mg/L) in the northwest part of the site. Chloride concentrations are reduced to less than 20 mg/L across the site but monitoring well distribution is inadequate to delineate a well-defined plume. Lack of off-site background chloride data precludes determination of an on-site chloride source.

Safe Earth Site

The Safe Earth site (fig. 23) is located in Roger Mills County, Oklahoma. The site consists of seven pits with a cumulative areal coverage of greater than 0.01 km² (>105,000 ft²) and has 15 monitoring wells located within and along the perimeter of the site. Comparison of the Safe Earth site to all the other sites for chloride in groundwater is shown in figure 23b. The concentrations of chloride in groundwater is low compared to most other sites. However, the distributions of chloride values in groundwater (fig. 23a) show maximum concentrations (>60 mg/L) in the east-central part of the site and appear to define a two-lobe plume. Time-series mapping (not shown) suggests that constituents move from west to east across the site. However, lack of off-site background chloride data precludes determination of an on-site chloride source.

Figure 22. Merkle site, Pottawatomie County, Oklahoma: (a) map shows distribution of chloride in groundwater. Histograms show (b) mean chloride in pit water, (c) mean TPH in pit water, (d) mean TPH in pit sludge, (e) mean BTEX in pit sludge, and (f) mean barium in pit sludge. Histograms in (b) to (f) for all sites in the study sample (fig. 5). Star (*) indicates mean for the Merkle site. Mean concentration for site in parentheses.

Figure 23. Safe Earth site, Roger Mills County, Oklahoma: maps show (a) distribution of chloride in groundwater, and (b) water levels. Histograms show (c) mean chloride in groundwater. Histograms in (c) for all sites in the study sample (fig. 5). Star (*) indicates mean for the Safe Earth site. Mean concentration for site in parentheses.

Southard Site

The Southard site (fig. 24) is located in Blaine County, Oklahoma. The site consists of six pits with a cumulative areal coverage of greater than approximately 0.02 km² (>175,000 ft²) and has four monitoring wells located along the perimeter of the site. Comparison of the Southard site to all the other sites for chloride and TPH in groundwater is shown in figures 24b and d. The timeseries graph of chloride values in groundwater shows that the four monitoring wells maintain a consistent hierarchy regarding chloride concentrations (fig. 24c). Distributions of chloride values in groundwater (fig. 24a) show maximum concentrations (>12,000 mg/L) in the northwestern part of the site and, in conjunction with the time-series graph, may define a plume of varying overall concentration with its focal point maintained in the same part of the site over time. These values exceed the SMCL for chloride in drinking water (250 mg/L) and the high reported value exceeds the EPA's salinity limits (10,000 mg/L TDS) of an underground source for drinking water (USDW). However, lack of off-site background chloride data precludes determination of an on-site chloride source.

T & S Site

The T & S site (fig. 25) is located in McClain County, Oklahoma. The site consists of two pits with a cumulative areal coverage of approximately 0.02 km² (178,500 ft²) and has five monitoring wells located along the perimeter of the site. Comparisons of the Southard site to all the other sites for chloride and TPH in groundwater are shown in figures 25b and c. Distributions of chloride values in groundwater (fig. 25a) show maximum concentrations (>3,000 mg/L) in the east-central part of the site and may define a plume that is elongate along a southwest-trending axis.

These values exceed the SMCL for chloride in drinking water (250 mg/L). However, lack of off-site background chloride data precludes determination of an on-site chloride source.

Figure 24. Southard site, Blaine County, Oklahoma: (a) map shows distribution of chloride in groundwater. Histograms show (b) mean chloride in groundwater, and (c) mean TPH in groundwater. (d) Time-series plot of chloride in groundwater by monitoring wells Histograms in (b) and (c) for all sites in the study sample (fig. 5). Star (*) indicates mean for the Southard site. Mean concentration for site in parentheses.

Figure 25. T & S site, McClain County, Oklahoma: (a) map shows distribution of chloride in groundwater. Histograms show (b) mean chloride in groundwater, and (c) mean TPH in groundwater. Histograms in (b) and (c) for all sites in the study sample (fig. 5). Star (*) indicates mean for the T & S site. Mean concentration for site in parentheses.

Webb/Femco Site

The Webb/Femco site (fig. 26) is located in McClain County, Oklahoma. The site consists of at least three pits with a cumulative areal coverage of approximately 0.05 km² (520,000 ft²) and has eight monitoring wells located along the perimeters of the three main pits. Two monitoring wells near the easternmost pit were dry during all measurements and provide no chemical data. Comparisons of the Webb/Femco site to all the other sites for chloride and TPH in groundwater, and chloride in pit water are shown in figures 26b-d. Distributions of chloride values in groundwater (fig. 26a) show maximum concentrations (>2,000 mg/L) in the northern part of the site, but the distribution of monitoring wells preclude delineation of a well-defined plume. These values exceed the SMCL for chloride in drinking water (250 mg/L). However, lack of off-site background chloride data precludes determination of an on-site chloride source.

Texas Sites

Albany Tank Yard

The Albany Tank Yard site (fig. 27a) was 0.5 mi north of the North Fork of Hubbard Creek near Albany, Shackelford County, Texas. This abandoned oil reclamation site included six sludge pits, nine 110 to 500 bbl storage tanks, some equipment, and metal buildings that served various purposes. The site was permitted in September 1982. Beginning in 1992, there was a history of permit violations such as leaking tanks, improper discharge of basic sediment and sludge, chemicals leaking from containers, and debris piles. A site assessment in June 1999 included onsite environmental sampling followed with chemical and laboratory analyses of constituents of concern (COCs). Comparison of chloride, TPH, BTEX, barium, and arsenic in sludge at the Albany site to all sites in the study sample is shown in figure 27b-f. Site constituents generally are near the mean

Figure 26. Webb/Femco site, McClain County, Oklahoma: (a) map shows distribution of chloride in groundwater Histograms show (b) mean chloride in groundwater, (c) mean TPH in groundwater, and (d) mean chloride in pit water. Histograms in (b) to (d) for all sites in the study sample (fig. 5). Star (*) indicates mean for the Webb/Femco site. Mean concentration for site in parentheses.

Shackelford County, Texas (a) Unpermitted sludge pits Tank East Limit of excavation South 0 Sludge disposal area 1 Limits of sludge disposal Sheet metal building Office 0 Fence Oily sludge 10 m Debris Sample exceeding screening criteria (b) (c) (d) (1,541 mg/kg) (16,608 mg/kg) 10-Number of sites Number of sites Number of sites (18 mg/kg) 6 4 3-10,000 ,00,00 100,00 00/ 00, Sludge chloride (mg/kg) Sludge TPH (mg/kg) Sludge BTEX (mg/kg) (e) (f) (<5 mg/kg) (375 mg/kg) Number of sites Number of sites 6 10,000 100,000 1,000 0001 001 001 100

Albany Tank Yard

Figure 27. Albany Tank Yard site, Shackelford County, Texas: (a) map shows distribution of various elements of the facility, including pits and hydrocarbon contamination at the surface. Also shown are limits of remedial excavation of contaminated soils. Histograms show (b) mean chloride in sludge, (c) mean TPH in sludge, (d) mean BTEX in sludge, (e) mean barium in sludge, and (f) mean arsenic in sludge. Histograms in (b) to (f) for all sites in the study sample (fig. 5) Star (*) indicates mean for site. Mean concentration for site in parentheses.

Sludge arsenic (mg/kg)

QAd1619c

Sludge barium (mg/kg)

of all CCDD sites in the sample set, except sludge BTEX and sludge TPH that may be somewhat above the mean.

Briggs Site

The Briggs site (fig. 28) is located in Matagorda County, Texas (Sullivan and others, 1999). The site consists of 1 pit with an areal coverage of approximately 0.03 km² (312,500 ft²) and an adjacent outwash area. The site has three monitoring wells located along the perimeter of the site. Comparisons of the Briggs site to all the other sites for chloride in groundwater and sludge, and arsenic in sludge are shown in figures 28e-g. Distributions of chloride values in groundwater (fig. 28a) show a maximum concentration (>900 mg/L) in the western part of the site and may delineate a symmetrical plume radiating from the location of maximum concentration. These values exceed the SMCL for chloride in drinking water (250 mg/L). However, lack of off-site background chloride data precludes determination of an on-site chloride source. The water-level map (fig. 28b) shows an even gradient that suggests potential for flow toward the north. Samples of pit sludge were collected on a regular grid across the site and were not composited prior to analyses. Distributions of chloride and arsenic in sludge indicate that sludge is not homogeneous and that locally elevated concentrations of chloride (>10,000 mg/kg) and arsenic (>2 mg/kg) occur locally. The low on-site arsenic concentration poses no recognized environmental hazard. The outwash (overflow) area also shows heterogeneous distributions of chloride and arsenic, although at lower concentrations than the sludge. The outwash area is analogous to reported occurrences at some sites where berms have been breached by water from overfilled pits and some of their contents released to the surrounding landscape.

Figure 28. Briggs site, Matagorda County, Texas: maps show (a) distribution of chloride in groundwater, (b) distribution of chloride in pit sludge, (c) distribution of arsenic in pit sludge, and (d) water levels. Histograms show (e) mean chloride in groundwater, (f) mean chloride in pit sludge, and (g) mean arsenic in pit sludge. Histograms in (e) to (g) for all sites in the study sample (fig. 5). Star (*) indicates mean for Briggs site. Mean concentration for site in parentheses.

T. L. Carter Site

The Carter site is 4.5 mi southeast of Roby, Fisher County, Texas. It received basic sediment, produced water, and drilling fluid. The site contained five unlined pits of various sizes ranging in capacity from 3400 to 10,600 bbl. Depth to groundwater is approximately 20 ft, and distance to surface water, the Clear Fork of the Brazos River, is 1500 ft.

Fox Vacuum Site

The Fox Vacuum site (fig. 29a) is an abandoned site located 8 mi north of Buna, Jasper County, Texas. The site was used as a washout yard for trucks operated by an oil-field vacuum-service company and as a disposal site for waste drilling fluids. The site was probably abandoned around 1985 (Dutton and others, 1995). The site included 7 disposal pits with a combined areal extent of approximately 0.5 acres (22,233 ft²) that contained an estimated 3,000 yd³ (14,426 bbl) of crude-oil contaminated drilling mud. There were no monitoring wells at the site.

Comparisons of the Fox Vacuum site to all sites in the study sample for chloride, TPH, barium, BTEX, and arsenic in sludge are shown in figure 29b-f. Concentrations of sludge chloride, barium, and arsenic appear greater than the mean of other sites. There was no evidence that constituents from the site had affected a well located 350 ft east of the site. Wastes contained chloride concentrations of <3,000 mg/L and TPH concentration of <1 percent (Dutton and others, 1995).

Gober Disposal Site

The Gober Disposal site (fig. 30) near Bridgeport, Wise County, Texas, was a low chloride (<3000 mg/L) drilling fluid CCDD site located on the north side of the Boonesville Conglomerate oil field. Few details on the facility are available at the time of this study. Site maps showed three

Figure 29. Fox Vacuum site, Jasper County, Texas: (a) map shows distribution of pits and area of barren soil. Histograms show (b) mean chloride in pit sludge, (c) mean TPH in pit sludge, (d) mean barium in pit sludge, (e) mean BTEX in pit sludge, and (f) mean barium in pit sludge. Histograms in (b) to (f) for all sites in the study sample (fig. 5). Star (*) indicates mean for site. Mean concentration for site in parentheses.

Figure 30. Gober Disposal site, Wise County, Texas: (a) map shows distribution of pits and natural direction of drainage. Histogram shows (b) mean chloride in pit water. Histogram in (b) for all sites in the study sample (fig. 5). Star (*) indicates mean for site. Mean concentration for site in parentheses.

irregularly shaped pits and a residential dwelling. Pit sizes were not determined since site maps lacked a map scale. The site was described as overgrown with trees and shrubs. Inspections in 1989 noted several permit violations including excessive chloride content in pits (15,000 mg/L). Figure 30b compares pit-water chloride sampled at the Gober site to all sites in the study sample; the mean measured value of 2,966 mg/L is similar to the mean of other sites.

Manvel Saltwater Disposal Site

The Manvel Saltwater Disposal site (fig. 31a) is an abandoned site located within the city limits of Manvel, Brazoria County, Texas. The site is a former saltwater disposal site in which crude oil and drilling waste have also been disposed (Kaiser and others, 1996). The site consists of 4 main waste disposal pits. Two main waste-disposal pits (A and B, fig. 31a-d) covered approximately 4.17 acres (181,448 ft²) and two smaller ponds (C and D) that might have been waste disposal pits covered approximately 0.75 acres (32780 ft²). Monitoring wells include 14 wells completed in an upper water-bearing zone, 4 wells completed in a deeper zone, 6 shallow monitoring wells about the site perimeter, and 8 offsite shallow monitoring wells. Of the 4 deep wells, 3 are located along the periphery and one is located within the site. There is a plugged saltwater disposal well and a plugged oil well on site. (Kaiser and others, 1996; Duke Engineering Services, Inc., 2001a).

Comparisons of chloride in groundwater and TPH, BTEX, barium, and arsenic in sludge at the Manvel site to all sites in the study sample are shown in figures 31e-i. Concentration of chloride in groundwater (fig. 31a, e) is more than 75,000 mg/L at the southeast side of the site and mean chloride (12, 715 mg/L) appears greater than the average for all sites.

Figure 31. Manvel Saltwater Disposal site, Brazoria County, Texas: maps show (a) distribution of chloride in groundwater, (b) barium in groundwater, (c) benzene in ground water, and (d) water levels. Histograms show (e) mean chloride in groundwater, (f) mean TPH in pit sludge, (g) mean BTEX in pit sludge, (h) mean barium in pit sludge, and (i) mean arsenic in pit sludge. Histograms in (e) to (i) for all sites in the study sample (fig. 5). Star (*) indicates mean for site. Mean concentration for site in parentheses.

Munson Site

The Munson site (fig. 32a) is an abandoned site near Lyons, Burleson County, Texas. It was permitted as a low chloride drilling fluid disposal site in February 1982, after a history of operating non-permitted pits for disposal of oilfield drilling wastes. The site contained five disposal pits, only three of which were permitted. Figure 32a displays the general configuration of the site; file maps and records were insufficient to accurately reconstruct dimensions and orientations of the pits. Figure 32b compares pit-water chloride between the Munson site and all sites in the study sample; chloride in the pit water is near the mean of all sites.

Post Oak Site

The Post Oak site (fig. 33a-c) is located 8 mi east of Giddings, Lee County, Texas. The site is a former sandstone quarry where there had been unauthorized disposal of hydrocarbon-contaminated drilling fluids (Sullivan and others, 1998a). The quarry pit had an areal extent of approximately 2.3 acres (125,000 ft²). The site contains an estimated 20,500-yd³ of waste material, mainly drilling fluids. Two onsite monitoring wells were installed at the site as part of an assessment. Comparisons of chloride, TPH, barium, and arsenic in sludge at the Post Oak site to all sites in the study sample are shown in figures 33d-g.

Red River Oilfield Services Site

The Red River Oilfield Services site (fig. 34a) is an abandoned site near Tolbert, Wilbarger County, Texas. The site was permitted as a oil reclamation site in 1986. The predominant land use in the area is agriculture. The site included a 50-ft by 40-ft lined pit used for separation by skimming of oil from saltwater; and a 36 ft by 8 ft plastic-lined, partitioned steel holding pit used for temporary storage of separated saltwater prior to transfer to steel storage tanks before final

Figure 32. Robert Munson site, Burleson County, Texas: (a) map shows distribution of permitted pits (1, 2, and 3), non-permitted pits, and other site elements. Histogram shows mean chloride in pit water (b). Histogram in (b) for all sites in the study sample (fig. 5) Star (*) indicates mean for site. Mean concentration for site in parentheses.

Figure 33. Post Oak site, Lee County, Texas: maps show (a) distribution of chloride in pit sludge, (b) distribution of TPH in pit sludge, and (c) distribution of lead in pit sludge. Histograms show (d) mean chloride in pit sludge, (e) mean TPH in pit sludge, (f) mean barium in pit sludge, and (g) mean arsenic in pit sludge. Histogram in (b) for all sites in the study sample (fig. 5). Star (*) indicates mean for site. Mean concentration for site in parentheses.

Figure 34. Red River Oilfield Services site, Wilbarger County, Texas: (a) map shows distribution of pits and other site elements. Histograms show (b) mean TPH in pit water and (c) mean TPH in sludge. Histogram in (b) and (c) for all sites in the study sample (fig. 5). Star (*) indicates mean for site. Mean concentration for site in parentheses.

disposal. A steel tank of unreported dimensions was also at the site. Both pits were enclosed by 1.5 to 2-ft high dikes constructed from material excavated from pits to prevent inflow of storm water. Several operations-related buildings and abandoned dwellings also existed.

Roeling Vacuum Site

The Roeling Vacuum site (fig. 35a-c) is an abandoned site located 6 mi northeast of Liberty, Liberty County, Texas (Sullivan and others, 1998b). The site consists of two washout pits, 8 small pits with average dimensions of 11-ft diameter and 4-ft depth, and a larger irregularly shaped waste disposal area measuring approximately 600 ft by 200 ft wide. The site was originally a quarry for dirt for oil-field roads. The 8 waste pits contained an estimated 950 yd³ of waste materials and the larger waste disposal cell contained an estimated 16,500 yd³.

Chloride concentration in onsite groundwater ranged from 140 to 710 mg/L and averaged about 400 mg/L, exceeding the SMCL unenforceable aesthetic guideline (250 mg/L) in two of the three monitoring wells. Chloride concentration in the main waste disposal area and smaller side pits (fig.35a-c) averaged 5,653 mg/kg and was as high as 42,000 mg/kg. Mean chloride concentration in soil beneath the waste in the waste disposal area was 5,773 mg/kg. Comparison of chloride, TPH, barium, and arsenic in sludge at the Roeling Vacuum site to all study samples are shown in figure 35d-g.

Rule Tank Trucks Site

The Rule Tank Trucks site (fig. 36a) is an abandoned reclamation facility located in southeast Rule, Haskell County, Texas. The site was permitted as a facility to process produced saltwater and tank bottoms, but may have received other non-permitted drilling wastes. The site contained 13 storage tanks and a 60 yd³ cinder-block-lined pit that contained debris including oil

Roeling Vacuum Site Liberty County, Texas

Figure 35. Roeling Vacuum site, Liberty County, Texas: maps of distribution of pits, sample locations, and other site elements, (b) water levels, and (c) chloride in groundwater. Histograms of (d) mean chloride in pit sludge, (e) mean TPH in pit sludge, (f) mean barium in pit sludge, and (g) mean arsenic in pit sludge; (d) to (g) for all sites in the study sample. * mean for Roeling Vacuum site; man concentration in parentheses.

Rule Tank Trucks Haskell County, Texas

Figure 36. Rule Tank Trucks site, Haskell County, Texas: (a) map shows distribution of pits, oil-contaminated surface areas, water levels, and other site elements. Histograms show (b) mean barium in pit sludge and (c) mean arsenic in sludge. Histogram in (b) and (c) for all sites in the study sample (fig. 5). Star (*) indicates mean for site. Mean concentration for site in parentheses.

cans and oil filters, 2 yd³ of sediment, and 18 bbl of water. A tank-truck trailer containing 35 bbl of liquid waste was also on site.

Five monitor wells were installed as part of an RRC-sponsored investigation (Duke Engineering Services, 2001b). Analyses confirmed that groundwater had not been significantly impacted (620 mg/L chloride; 1,100 mg/L TDS). TPH was 65,700 to 128,000 mg/kg in pit sludge, 135,000 to 417,000 mg/kg in tank sludge; and 10,700 mg/kg in sludge stored in the trailer tank. Lead content of sludge in one of the tanks was 690 mg/kg. Comparison of barium and arsenic in sludge at the Rule site with all study samples are shown in figure 36b-c. Mean barium and arsenic in site sludge was similar to the mean of all study samples.

Steve's Oilfield Services

The Steve's Oilfield Services site (fig. 37) is an abandoned reclamation site near Kingsville, Kleberg County, Texas, that accepted saltwater, tank-bottom sediment, and processed drilling mud for reuse. RRC sent the facility a forfeit order in August 1993 after receiving complaints about fluids overflowing onto cultivated lands that surround the site, and reports of illegal deliveries. The site was later abandoned. During site assessment, the site was found to have14 tanks, some of which were leaking, two 180- ft² concrete wash-out pits, 15 unlabeled drums containing unknown materials scattered about, 11 storage and 3 fracture media tanks, a building, six soil mounds, and patches of oil-stained soil.

Site Assessment and Remediation: Texas Examples

This review focuses on 12 of the previously summarized Texas sites for which potential environmental impacts were assessed by the RRC or its contractors, and for which recommendations for remediation measures were developed. Remediation measures, when deemed

Figure 37. Steve's Oilfield Services site, Kleberg County, Texas: maps show (a) distribution of specific conductance in groundwater, and (b) water levels. Histograms show (c) mean TPH in sludge, (e) mean arsenic in pit sludge, (f) mean barium in pit sludge, and (g) mean arsenic in pit sludge. Histograms in (c) to (g) for all sites in the study sample (fig. 5). Star (*) indicates mean for Steve's site. Mean concentration for site in parentheses.

necessary, were undertaken for many of these sites. Most CCDD sites are still in the assessment phase.

We also reviewed available files on remediation assessments in Oklahoma. Most sites were not found to have environmental conditions warranting additional corrective measures. Site-specific information on procedures used prior to final closure of these CCDD sites in Oklahoma, such as de-watering and back filling of pits, were not discussed in available file documents. It is likely these remediation procedures had not been employed at the time information was gathered. No data on remediation of abandoned CCDD sites in Louisiana or New Mexico were available.

These Texas case examples may include aspects that are representative of abandoned CCDD sites elsewhere. Methods suggested or used for assessment and remediation also may be illustrative of present practice where environmental impacts are not great. Site complexity ranges from a single small pit at some sites to large, multi-pit facilities that also included oil-reclamation and saltwater disposal operations. Remediation requirements range from cases where no immediate action was found to be warranted to cases where complete dismantling of tanks, plumbing, and buildings along with extensive excavation and export of contaminated sludge and soils, and landscaping was required.

Since 1991, RRC personnel have identified and inventoried abandoned oil-field sites as candidates for cleanup. The RRC ranked sites by giving priority to contaminated sites that (1) have had observable releases, (2) occur in groundwater recharge zones with high soil permeability, (3) lie near surface-water bodies or water-supply wells, or both, (4) have high public profile and have received complaints, and (5) are near population centers. Straightforward solutions for cleanup are readily apparent for many of the sites. In the simplest cases inspection by RRC may be sufficient to satisfy requirements for environmental security of a site. In more complex cases consultants are

contracted for site assessment, determination of required remediation procedures, and estimate of cleanup costs.

Texas oversight of assessment and cleanup of CCDD sites has focused on assuring environmental security of the site, such that adjacent soils, surface water, and groundwater will not be contaminated after closure. Assessment of need for remediation at abandoned CCDD sites in Texas has used multiple guidelines drawn from State regulations and the EPA. Guidelines applied in Texas are from the RRC and the TCEQ (formerly Texas Natural Resource Conservation Commission [TNRCC]), including health-based standards (TNRCC, 1996, 1998, 1999; U.S. Environmental Protection Agency, 1996a, b). For example, the TPH standard of 1 percent dry weight mandated for crude-oil spills in non-sensitive areas (Rule 91) might be used as a guideline for determining whether specific remediation activities at a CCDD site is warranted, although the standard as written does not apply to such sites. Likewise, although Rule 8 does not specify a chloride concentration for drilling-fluid disposal, RRC-issued permits for landfarming sites generally stipulate a chloride concentration limit of 3000 mg/L. That limit might be taken as a guideline for consideration in closing a CCDD site.

The following 12 sites, summarized in the previous section, include a range of environmental categories and remediation applications. These sites do not make up a historically exhaustive list of abandoned CCDD sites in Texas but include well documented sites described in RRC remediation files. These sites have been abandoned over the last 20 years or more. Before 1984, CCDD sites operated under less stringent rules or guidelines. Many operators of those sites and of proposed sites where pits had already been excavated applied for RRC permits in 1984, but were refused for a variety of reasons. The RRC ordered CCDD operators to dewater, backfill, and close pits at many of these sites. Although not technically abandoned, the environmental impact of

these sites is not well known. Examples are presented in order of the apparently least complicated to the most complex.

Albany Tank Yard

The Albany Tank Yard site (fig. 27) was 0.5 mi north of the North Fork of Hubbard Creek near Albany, Shackelford County, Texas. This abandoned oil reclamation site included six sludge pits, nine 110 to 500 bbl storage tanks, some equipment, and metal buildings that served various purposes. Pit waste had levels of chloride at (3,270 to 10,845 mg/L) and TPH (as much as 15.2 percent). Lead (average of 551 mg/kg) and arsenic (average of 37.2 mg/kg) exceeded TCEQ limits such that TCLP tests would be required to characterize waste prior to approval for disposal in a municipal landfill under TCEQ authority. Benzo[a]pyrene (estimated at 3 mg/kg) exceeded the TCEQ risk-reduction program residential Tier 1 level (TNRCC, 1999). Monitor wells were dry and not sampled.

Recommendations for remediation included excavation and removal of impacted soil; disposal of debris and scrap metal; cleaning, dismantling and disposal of metal tanks; and excavation and removal of 2,400 yd³ of soil to a depth of 7 ft from the sludge area. Further assessment of the site is ongoing. State expenditure for site investigation activities is approximately \$138,700.

Briggs Site

The Briggs site (fig. 28) is an abandoned site east of Bay City, Matagorda County, Texas (Sullivan and others, 1999). The site consists of 1 pit with an areal coverage of approximately 0.03 km² (312,500 ft²) and an adjacent outwash area.

Samples of pit sludge were collected on a regular grid across the site and not composited prior to analysis in order to assess spatial variability. Distributions of chloride and arsenic in the waste material (fig. 28d, c) confirm that constituents are nonuniformly distributed with locally elevated concentrations of chloride (average of 6,600 mg/kg, maximum >10,000 mg/kg) and arsenic (>2 mg/kg). The low onsite arsenic concentration posed no immediate environmental hazard. The outwash area also shows variation in chloride and arsenic levels at lower concentrations than the main disposal pit. The outwash area may be analogous at other sites where there has been a breach in pit berm and some migration of pit contents.

Assessment techniques used at the site included monitor well installation, water-level measurement, groundwater sampling, borehole and surface geophysical (EM) surveys, piston coring to sample the waste package and soils, a survey of naturally occurring radioactive materials (NORM) at ground surface, and a survey of area domestic wells. EM surveys showed minimal elevated ground conductivity suggesting there was no excursion of saltwater from the site. The EM survey did indicate a zone of elevated conductivity immediately beneath the site that appears to extend to a depth of 26 ft. Chromium and lead were detected in the waste material and in soils in a portion of the outwash area with concentrations above allowable limits for landfill disposal. The wastes exhibited low content of organic compounds and metals as measured by Toxicity Characteristic Leachate Procedure (TCLP) tests. Concentrations of organics and metals in soils did not exceed health-based criteria. Cadmium, lead, and chloride were detected above regulatory guidelines in onsite groundwater. However, it was concluded that groundwater required no remediation because there is little likelihood of contamination of nearby domestic wells, completed at greater depths in aquifers separated from the shallow groundwater.

Primary factors to be considered in remediation were the low compressive strength of the waste package and the elevated chloride levels. The site poses some potential physical hazard because as the 3- to 7-ft thick waste package has very little load-bearing strength. It was determined that the estimated 39,000 yd³ waste package would require 48.4 acres for land farming, larger that the property dimensions. A recommended remediation option for the site was installation of an engineered soil-geomembrane cap to isolate the waste package from leaching by rainwater, coupled with continued monitoring, including installation of additional monitoring wells. These and other options were concluded to be impractical because of expense and not justified by constituent concentrations. Site monitoring is ongoing to determine whether any change in conditions warrant further action.

T. L. Carter Site

The Carter site is 4.5 mi southeast of Roby, Fisher County, Texas. It received basic sediment, produced water, and drilling fluid. The site contained five unlined pits of various sizes ranging in capacity from 3400 to 10,600 bbl. Depth to groundwater is approximately 20 ft, and distance to surface water, the Clear Fork of the Brazos River, is 1500 ft. A 1984 permit application was denied by RRC and closure of pits was ordered. In 1991 pits were still open; by 1993 only 1 pit had been partly backfilled. Close proximity to surface water and lack of space to dispose of pit materials by land treatment complicated efforts to backfill the pits. File information contained no data on waste or groundwater constituent concentrations. A preliminary cost estimate by RRC for remediation was approximately \$48,000. Assessment of the site is still in progress.

Fox Vacuum Site

The Fox Vacuum site (fig. 29) is an abandoned site located 8 mi north of Buna, Jasper County, Texas. The abandoned site was used as a washout yard for trucks operated by an oil-field vacuum-service company and as a disposal site for waste drilling fluids. Remediation actions undertaken for the site included mixing contents of the 7 pits with berm material and clean soil, backfilling the pits, and leveling and compacting. State expenditures for site clean up, including other actions besides pit remediation, was approximately \$13,000.

Gober Disposal Site

The Gober Disposal site (fig. 30) near Bridgeport, Wise County, Texas, was a low chloride (<3000 mg/L) drilling fluid CCDD site. A June 1990 RRC memo noted that natural degradation of the oil was in progress and suggested that no further cleanup was required. The site was administratively closed in September 1991. However, an April 1999 memo noted new violations including disposal of oil- and saltwater-contaminated drilling mud in unauthorized pits and pits permitted to receive only low chloride drilling fluid. The owner spread hay on remaining wastes to adsorb oil. The site was never reopened.

Manvel Saltwater Disposal Site

The Manvel Saltwater Disposal site (fig. 31) is an abandoned site located within the city limits of Manvel, Brazoria County, Texas. The site is a former saltwater disposal site in which crude oil and drilling waste have also been disposed.

Groundwater exceeds the SMCL unenforceable aesthetic guideline for chloride in drinking water in 12 of the shallow monitoring wells and exceeds the USDW limit for TDS in 8 of the shallow monitoring wells. Barium levels in groundwater are highest (16 mg/L) toward the eastern

side of the site (fig.31b). Barium in sludge (mean of 53,775 mg/kg) appears to exceed the average for all sites in the study sample and exceeds the TCEQ risk-reduction program residential Tier 1 level (TNRCC, 1999). Benzene levels in groundwater are highest (60.7 μg/L) just north of the disposal pits and appears to form a plume that is centered around the plugged oil well (Duke Engineering Services, Inc., 2001a). The TCEQ residential Tier 1 level for groundwater ingestion (TNRCC, 1999) for benzene is 5 μg/L. Benzene concentration appears to have decreased over time (Duke Engineering Services, Inc., 2001a). Samples collected from sludge in the 2 disposal pits showed TPH levels up to 4.1 percent, with an average of 1.2 percent (Kaiser and others, 1996). Samples of soil from beneath the pit sludge showed concentration levels below 1 percent. (Duke Engineering Services, Inc., 2001a). EM surveys indicated that saline water lies 3 to 6 ft beneath the surface around the perimeter of the site in a sand layer. The base of the saltwater appears to be at a depth of about 30 ft, where the sand is underlain by red clay (Kaiser and others, 1996).

Initial recommendations for clean up included monitoring, elimination of high-salt wastes in the pits, and natural dilution of saline groundwater. The plugged saltwater disposal well and oil well were not considered sources of documented groundwater salinity. Offsite sources of elevated salinity, chloride, and barium in groundwater, however, are possible at this site. It was recommended that pit fluids be discharged under permit to surface drainage to a nearby bayou.

Onsite land treatment of high-TPH waste is preferred to removal because of the expense that would be incurred because the waste volume is great. Backfilling and leveling of pits (Kaiser and others, 1996) would require a U.S. Army Corps of Engineers wetland modification permit. Additional recommendations from a later site assessment included excavation and removal of drilling fluid wastes from the pit with the highest TPH (pit A) and testing for barium in the soil beneath the pit

(Duke Engineering Services, Inc., 2001a). Assessment of the site is still in progress. To date the RRC has expended approximately \$221,100 on assessment of the site.

Munson Site

The Munson site (fig. 32) is an abandoned site near Lyons, Burleson County, Texas, permitted as a low chloride drilling fluid disposal site. In May of 1982 pits were inspected revealing seeping fluids. In 1986 complaints were received that a berm had eroded and fluids were escaping onto adjacent property. Approximately 50,000 bbl of drilling fluids discharged to the adjacent creek. Also in 1986 a vacuum-truck company attempted to dispose of wastes with chloride concentrations of 70, 000 mg/L. A 1994 RRC site assessment determined that the site was abandoned and that approximately 500,000 bbl were in the pits. Pits were found leaking at an undetermined rate. Assessment of the site is still in progress.

Post Oak Site

The Post Oak site (fig. 33) located east of Giddings, Lee County, Texas, is a former sandstone quarry where there had been unauthorized disposal of hydrocarbon-contaminated drilling fluids. Chloride concentration in one of the monitoring wells (550 mg/L) exceeded the SMCL unenforceable aesthetic guideline (250 mg/L); additional data were needed to define background concentration and establish whether the site was a source of chloride. Several other constituents exceeded regulatory guidelines. In both monitoring wells, EPA maximum contaminant levels (MCLs) for cadmium (0.005 mg/L) and chromium (0.1 mg/L) were exceeded. Cadmium ranged from 0.031 to 0.018 mg/L and chromium ranged from 0.15 to 0.32 mg/L. Lead was detected at 0.093 to 0.019 mg/L, above the EPA action levels of 0.015 mg/L. The action level is the concentration above which steps must be taken to reduce the concentration for drinking water.

Among organic constituents, only naphthalene in MW2 (0.042 mg/L) exceeded the TNRCC guideline limit for residential land use of 0.49 mg/L.

Samples of pit sludge were collected at 15 locations on a regular grid across the site; samples were not composited to allow an evaluation of spatial variation. Chloride, TPH, and lead in the waste material vary across the pit (fig. 33a-c). Mean chloride concentration (953 mg/kg; fig. 33d) is near the mean for all sites in the study sample; maximum measured chloride in sludge was about 2,500 mg/kg (fig. 33a). Mean sludge TPH concentration (903 mg/kg) was less than average (fig. 33e). An off-site background soil sample taken near the southwestern end of the pit shows a chloride concentration of 2 mg/kg and no TPH. Pit fluids had chloride levels of only 150 mg/L, well below the SMCL unenforceable aesthetic guideline for drinking water. Pit solids were determined to be appropriate for onsite land treatment.

Recommendations for site remediation included removal of the waste package from the pit for onsite land treatment. It was further recommended that a minimum of 6 additional monitoring wells be installed onsite to further evaluate potential for groundwater impact. It was estimated that waste removal and land treatment, installation of monitoring wells, and 5 years of monitoring would cost about \$246,000. Site assessment is continuing.

Red River Oilfield Services Site

The Red River Oilfield Services site (fig. 34) near Tolbert, Wilbarger County, Texas, is an abandoned site previously permitted as a oil reclamation site. It was administratively closed in May 1992 after abandonment. In 1993 the RRC received complaints that rain-filled pits were overflowing. Site assessment by the RRC determined that the site contained approximately 2,000 bbl of liquid and solid waste material. Analyses of dry sludge from the pits documented oil and

grease content of 46 to 73 percent and TPH of 360,000 to 450,000 mg/kg (36 to 45 percent). Specific conductance of pit fluids was 5,450 to 22,600 µmhos/cm. Pit fluid samples also contained 1,772 to 8,169 mg/L chloride, 10 to 11 percent oil and grease, and an average of <5 mg/kg TPH. The skimming pit had a pH of 4.9 and the saltwater pit had a pH of 7.7. Sludge TPH had one of the highest average values (360,000 mg/kg) of all study samples

Site remediation included removal to a RRC-approved facility of all sludge, paraffin, tank bottom sediment, drilling mud, solids from pits and tanks, pit water and tank washwater, the liner from the skimming pit, disassembled components of the steel pit, steel tank and associated equipment, oil-stained soils, excavated soil from pit walls and bottoms, and various debris. Total State expenditure for site assessment and remediation was approximately \$24,700.

Roeling Vacuum Site

The Roeling Vacuum site (fig. 35), located 6 mi northeast of Liberty, Liberty County, Texas, is an abandoned site with two washout pits, 8 small pits, and a larger irregularly shaped waste disposal area. The site was originally a quarry for dirt for oil-field roads.

Assessment methods had included an EM survey of the site, trenching and probing of the soil, installation of three monitoring wells and groundwater sampling, and an inventory and sampling of nearby domestic water-supply wells. Groundwater chloride and chloride, TPH, barium, and arsenic in sludge constituents appear at or somewhat less than the average values for all study samples. Other COCs were below regulatory guidelines.

A preliminary recommendation for remediation included excavation from the waste disposal area of high-chloride wastes and adjacent soils and removal to a RRC-approved site. There is insufficient volume of clean soil on-site to completely refill pit excavations, but partial back

filling and establishment of a wetlands area would be appropriate. There also were concerns for groundwater impacts resulting from excavation of the main disposal area. It was recommended that additional monitoring wells be installed including an upgradient well to determine background concentrations. Assessment of the site is still in progress.

Rule Tank Trucks Site

The Rule Tank Trucks site (fig. 36) an abandoned reclamation facility located in southeast Rule, Haskell County, Texas, was permitted as a facility to process produced saltwater and tank bottoms but may have received other non-permitted drilling wastes. Remediation consisted of removal of the hydrocarbon-contaminated wastes from tanks, the pit, and 580 yd³ of soils excavated from around the pit and tanks to the Borden County Waste Disposal Facility. The tanks were cleaned, dismantled, and recycled. The five monitoring wells were to be plugged in March 2003. Total cost to the State for assessment and remediation was approximately \$191,800. No further remedial activities were planned for this site.

Steve's Oilfield Services

The Steve's Oilfield Services site (fig. 37) is an abandoned reclamation site near Kingsville, Kleberg County, Texas. Site assessment consisted of a technical review of the site geology, soils, and regional hydrology. Neighbors were interviewed. Analyses were performed to characterize waste disposal requirements. It was concluded that there was no contamination of soils or groundwater. Pits were found to contain several barrels of water, sediment, some hydraulic oil, and drilling-mud polymer. Mean barium concentration (4,700 mg/L) in one pit, and barium concentration averaged for all pits (3,400 mg/kg), exceeded the TCEQ risk-reduction program residential Tier 1 level of 2,800 mg/kg (TNRCC, 1999). Clean up consisted of removal of all pit

contents and site equipment and hardware associated with the reclamation operation. Pits were back-filled, leveled, and compacted. Total expenditure by the State for assessment and clean up was approximately \$196,300.

Discussion

For most sites in this survey, analyses of pit sludge were based upon composited samples representing one or more pits. Although they were often sampled on regular grids, most analyses of pit sludge do not reflect within-pit spatial variation of concentrations of COCs. For the few sites where analyses record sampling locations within individual pits, the distribution of analytes is shown to be nonuniform. Results in most cases appear to reflect where waste was discharged into the pit at its edge. Two sites where analyses are tied to specific locations within pits include the Royce Kelly site in Oklahoma and the Vernon Briggs site in Texas. Both these sites were abandoned by operators and became custody of the States, which initiated State-funded closure and cleanup operations.

Some inventoried sites, but not most, show that although concentrations of COCs change from one sampling event to the next, the rank or order of monitoring wells having the greatest and least concentrations remains unchanged. In these examples, even though absolute concentrations change, one well consistently maintains its prominence as the most contaminated well while another maintains its status as the least contaminated. Most of the studied sites show systematic changes in COC distribution patterns between sampling events.

Elevations of groundwater in the immediate vicinity of sites, based on monitoring-well measurements, generally do not show a uniform hydraulic gradient. Rather, a water-level mound is present within a site. Several sites display relatively consistent patterns of water levels in which

mounds in water-level elevation persist. At some sites water-level elevations consist of irregularly distributed highs and lows whose arrangement does not vary systematically between measurement events.

CONCLUSIONS

The objective of site assessment in these case examples was to identify the nature, sources, and extent of constituents of concern that resulted from disposal of drilling fluids, produced water, and associated E&P waste at CCDD sites. The most commonly occurring constituents of concern reported in pits at CCDD sites were hydrocarbons and saltwater mixed with drilling fluids.

Detection of hydrocarbon constituents most commonly used TPH analysis. In some examples, BTEX or more specific analyses have been reported. Pit water with high chloride can be a source of increased salinity in soil, groundwater, and surface water. Analysis of concentrations of constituents, such as chloride and TPH, and determination of the gradient of hydraulic head in groundwater, have usually been conducted to assess water quality and the potential for migration of constituents. EM surveys have been employed where saltwater contamination is suspected.

We found records for 287 CCDD sites in Louisiana, New Mexico, Oklahoma, and Texas (table 1). Of these, 54 were active and 199 were inactive as of January 2002, and 34 had been abandoned. Most (95 percent) were disposal-pit facilities and the rest were used for land treatment of drilling fluids. The typical disposal-pit facility has fewer than 3 disposal pits on site (fig. 3). The median size of a facility's pits is approximately 2 acres (fig. 4). The sites in our database do not compose an exhaustive list of all currently and previously operating CCDD sites, but rather are sites for which data were available during the data collection phase of our investigation.

Histograms of the statistical distribution of typically measured constituents of concern at CCDD sites should provide a basis for evaluating the data from other sites (fig. 5). Many CCDD sites in the four States have samples of pit water or groundwater, or both, in which chloride concentrations or TDS that exceed respective standards: the 250 mg/L EPA unenforceable SMCL for chloride and the 10,000 mg/L TDS definition of an USDW (U.S. Environmental Protection Agency, 2000). Standard laboratory procedures are being used in the four states so data comparability is high, although we could not find specific analytical references for many reports. Some undocumented CCDD abandoned sites may also have levels that exceed these SMCL and TDS criteria. Applicable regulations do not require such sites, based solely on these criteria, to be remediated mainly because these chloride levels are normally not health based, but aesthetically based. In addition, available site data do not generally document the ambient concentration in the adjacent environment or determine if these constituent concentrations reflect contributions from onsite or from offsite. Remediation decisions for specific CCDD sites may require collection of additional onsite data on shallow groundwater quality and background data from upgradient of site operations.

Comparison of well documented active and inactive CCDD sites versus poorly documented abandoned sites shows that maximum average concentration of constituents are generally consistent (table 9). Constituent concentrations at abandoned sites generally are within the range for constituents at active and inactive sites. At some abandoned sites, maximum average concentration of barium, chromium, lead, silver, TPH, or BTEX, of constituents is greater than at active and inactive CCDD sites. Data from well-documented sites, therefore, may be used to predict conditions at abandoned sites, except that older abandoned sites might have outlier concentrations for some metal and organic constituents. Differences may reflect a change in industry practice.

Also, we obtained data on soil contamination outside of disposal areas or treatment cells only for two sites; findings, therefore, apply only to on-site conditions.

Data from Oklahoma and Texas indicate that techniques used for site-assessment ranged from visual inspections to comprehensive geotechnical and scientific surveys. Survey measurements have included geophysical measurements; sampling and analyses of chemical composition of wastes, soil, groundwater, and surface water; measurement of water levels in monitoring wells; soil-gas measurement; radon detection; well tests of hydraulic conductivity; elevation surveys; and coring and description of core. Louisiana has assessed and closed one abandoned CCDD site, is assessing one abandoned CCDD site, is developing plans to assess six sites, is in the process of remediating one abandoned CCDD site, and is developing plans to remediate three abandoned CCDD sites. Most assessments of abandoned CCDD sites in Oklahoma consisted of stratigraphic surveys and chemical analyses of solid wastes; historical data for surface water and groundwater were available for several sites. RRC conducted comprehensive assessments at some sites with stratigraphic surveys, chemical analyses of wastes, surface water, and groundwater, and geophysical measurements. Such in-depth assessments are expensive, however, and may not be cost-effective for all sites. At other Texas sites, assessments included inspection, mapping, and chemical analyses of soils, wastes, and groundwater.

Site remediation measures had been undertaken for one Louisiana CCDD site and three abandoned CCDD- and other sites in Texas as of this study. Remediation techniques were recommended on the basis of site assessments. Remediation alternatives address physical hazards and potential for transport of dissolved salt and petroleum hydrocarbons to the accessible environment. Recommended options included excavation of wastes and contaminated adjacent soils followed by either removal to permitted disposal facilities, or land farming (land spreading or

land treatment) if sufficient on-site area were available. Groundwater remediation was not found to be necessary at any abandoned CCDD site in Texas as of December 2002. Installation of additional monitoring wells and continued monitoring of on-site groundwater were generally recommended; further monitoring may indicate a need for remediation. Assessments are continuing for most abandoned CCDD sites in our investigation and final determinations for remediation measures are pending.

ACKNOWLEDGMENTS

This project was supported by U.S. Department of Energy Award No. DE-AC26-99BC15225 and Grant No. 00-0000-4064 from the American Petroleum Institute. Personnel at the offices of the Office of Conservation of the Louisiana Department of Natural Resources, the Oil Conservation Division of the New Mexico Energy, Mineral, and Natural Resources Department, the Oklahoma Corporation Commission and Oklahoma Energy Resources Board, and the Railroad Commission of Texas were extremely supportive and helpful during this project. They provided onsite office space, ready access to files, file data from ongoing investigations, staff time for discussing project files and agency rules and procedures, and photocopy services.

Rebecca C. Smyth, Jerry Mullican, and Yaguang Gu at the Bureau of Economic Geology assisted with research, data collection, and liaison with various State agencies. Illustrations were drafted by Jana Robinson under the supervision of Joel Lardon.

REFERENCES

ALPHA-AWWA-WPCF, 1985, Standard Methods for the examination of water and wastewater.

16th Edition. Washington, D.C.: American Public Health Association.

- American Petroleum Institute, 2000, Overview of exploration and production waste volumes and waste management practices in the United States, based on API Survey of onshore and coastal exploration and production operations for 1995 and API survey of natural gas processing plants for 1995: ICF Consulting, draft final report April 2000, 70 p.
- Bebout, D. G., Weise, B. R., Gregory, A. R., and Edwards, M. B., 1982, Wilcox Sandstone reservoirs in the deep subsurface along the Texas Gulf Coast: their potential for production of geopressured geothermal energy: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 117, 125 p.
- Duke Engineering and Services (DES), 2001a, Environmental Assessment Report for the Manvel Saltwater Disposal site, Manvel, Texas: prepared for the Railroad Commission of Texas, July 2001, variously paginated.
- Duke Engineering and Services, Inc., 2001b, Environmental assessment report for the Rule Tank

 Trucks site, Haskell County, Texas: prepared for the Railroad Commission of Texas, April

 2001, variously paginated.
- Dutton, A. R., Paine, J. G., and Tweedy, S. W., 1995, Hydrogeologic analysis of contamination and evaluation of remediation alternatives—Fox Vacuum Site, Jasper County, Texas: The University of Texas at Austin, Bureau of Economic Geology, final technical report prepared for the Railroad Commission of Texas, under Interagency Contract No. 96-0050, 96 p.
- Dutton, A. R., Smyth, R. C., Nance, H. S., Mullican, Jerry, and Gu, Yaguang, 2000, History, regulation, and closure of abandoned centralized and commercial drilling-fluid disposal sites in Louisiana, New Mexico, Oklahoma, and Texas: Proceedings of the 2000 Ground Water Protection Council Annual Forum, September 24–27, 2000,p. 133-138.

- Galloway, W. E., Ewing, T. E., Garrett, C. M., Tyler, Noel, and Bebout, D. G., 1983, Atlas of major Texas oil reservoirs: The University of Texas at Austin, Bureau of Economic Geology, 139 p.
- Interstate Oil and Gas Commission, 1992, Oklahoma State Review, IOGCC/EPA review of oil and gas exploration and production waste management regulatory programs: Interstate Oil & Gas Compact Commission, 159 p.
- Interstate Oil and Gas Commission, 1993, Texas State review, IOGCC/EPA review of oil and gas exploration and production waste management regulatory programs: Interstate Oil & Gas Compact Commission, 131 p.
- Interstate Oil and Gas Commission, 1994, Louisiana State Review, IOGCC/EPA review of oil and gas exploration and production waste management regulatory programs: Interstate Oil & Gas Compact Commission, 84 p.
- Kaiser, W. R., Paine, Jeffery G., and Tweedy, Steven W., 1996, Evaluation of contamination and remediation, Manvel Saltwater Disposal site, Brazoria County, Texas: Final Technical Report prepared for the Railroad Commission of Texas under contract no. 96-0050, Alan R. Dutton, Principal Investigator.
- Kosters, E. C., Bebout, D. G., Seni, S. J., Garrett, C. M., Brown, L. F., Jr., Hamlin, H. S., Dutton, S. P., Ruppel, S. C., Finley, R. J., and Tyler, Noel, 1989, Atlas of major Texas gas reservoirs:

 The University of Texas at Austin, Bureau of Economic Geology, 161 p.
- LAC, 1999, Louisiana Administrative Code 43; xix.129(B)(7c), 1999

- Nance, H. S., and Dutton, Alan R., 2002, E & P drilling fluid disposal facilities in Texas and Louisiana: analogs for environmental assessments of abandoned sites: Gulf Coast Association of Geologic Societies Transactions, 2002 Annual Meeting, Austin, Texas, October 31-November 1, 2001, p. 779-788.
- New Mexico Oil Conservation Division, 1993, Unlined surface impoundment closure guidelines:

 Sante Fe, New Mexico Energy, Mineral, and Natural Resources Department Oil

 Conservation Division, 15 p.
- Sullivan, Jeri, Dutton, Alan, Nava, Robin, Mahoney, Matthew, Gibeaut, James, Blum, Martina, and Choi, Wan-Joo, 1998a, Site Investigation and evaluation of remediation alternatives for the Post Oak site, Lee County, Texas: University of Texas at Austin, Bureau of Economic Geology, Final Contract Report prepared for the Railroad Commission of Texas under Interagency Contract No. 95-0050.
- Sullivan, Jeri, Dutton, Alan, Nava, Robin, Mahoney, Matthew, Gibeaut, James, Blum, Martina, and Choi, Wan-Joo, 1998b, Site Investigation and evaluation of remediation alternatives for the Roeling Vacuum site, Liberty County, Texas: University of Texas at Austin, Bureau of Economic Geology, Final Contract Report prepared for the Railroad Commission of Texas under Interagency Contract No. 95-0050.
- Sullivan, Jeri, Dutton, Alan, Nava, Robin, Mahoney, Matthew, Gibeaut, James, Blum, Martina, and Choi, Wan-Joo, 1999, Site Investigation and evaluation of remediation alternatives for the Vernon Briggs site, Matagorda County, Texas: University of Texas at Austin, Bureau of Economic Geology, Final Contract Report prepared for the Railroad Commission of Texas under Interagency Contract No. 96-0050.

- TNRCC, 1996, Disposal of special wastes associated with development of oil, gas, and geothermal resources: September, Austin, Texas.
- TNRCC, 1998, Proposed Texas Risk Reduction Program (TRRP) rule (30 TAC 350), revised protective concentration limit tables, http://www.tnrcc.texas.gov/ waste/riskrul3.htm
- TNRCC, 1999, Consistency memorandum on implementation of the existing risk rules. April 14, 1999.
- U.S. Environmental Protection Agency, 1983, Methods for chemical analysis of water and wastes:U.S. Environmental Protection Agency, Cincinnati, Ohio, Office of Research andDevelopment.
- U.S. Environmental Protection Agency, 1986, Test methods for evaluating solid waste, physical/chemical methods, SW-846, 3rd edition: U.S. Environmental Protection Agency, variously paginated.
- U.S. Environmental Protection Agency, 1988, Regulatory Determination for Oil and Gas and Geothermal Exploration, Development and Production Wastes: 53 FR 25447-25459, July 6, 1988.
- U.S. Environmental Protection Agency, 1993, Clarification of the Regulatory Determination for Wastes From the Exploration, Development and Production of Crude Oil, Natural Gas and Geothermal Energy: v. 58, no. 53, 58 FR 15284-15287, March 22, 1993.
- U.S. Environmental Protection Agency, 1996a, Drinking water and health advisories, Office of Water, EPA 922-B-96-002.

- U.S. Environmental Protection Agency, 1996b, Region 9 preliminary remediation goals. Http://www.epa.gov/region9/.
- U.S. Environmental Protection Agency, 2000, Drinking water standards and health advisories: U.
 S. Environmental Protection Agency, Washington, EPA 822-B-00-001,
 http://www.epa.gov/ost/drinking/standards/dwstandards.pdf.
- Wakim, P. G., 1987a, API 1985 Production waste survey—statistical analysis and survey results:

 American Petroleum Institute, final report prepared for Production Waste Issue Group,

 236 p.
- Wakim, P. G., 1987b, API 1985 Production waste survey: part II. Associated and other waste—statistical analysis and survey results: American Petroleum Institute, final report prepared for Production Waste Issue Group, 52 p.

Appendix A. Locations, names, numbers of pits or cells, total area per site of pits or cells, and operational status of CCDD sites in the database

Louisiana

	Parish	Site	No. Pits	Pit Area (acres)	Pit Area (ft2)	Status
Ac	adia	Chaddick	1	no data	no data	inactive
Ac	adia	Guillary	no data	no data	no data	inactive
Во	ssier	Folse Farms	no data	no data	no data	inactive
Ca	meron	Big Diamond	5	32.60	1,420,000	abandoned
lbe	eria	Waguespack	7	10.25	446,516	inactive
Je	ff Davis	Castex	11	4.89	213,125	abandoned
St	Mary	Marine Vacuum	no data	no data	no data	inactive
St	. Mary	Oil Base	1	no data	no data	inactive
St	Mary	Tidrow	1	no data	no data	inactive
Ve	rmilion	Baudoin	1	no data	no data	inactive
Ve	ermilion	Castex	11	4.89	213,125	abandoned
Ve	ermilion	Gulf Coast Vacuum	no data	no data	no data	inactive
Ve	rmilion	Leleux	no data	no data	no data	abandoned
Ve	ermilion	Nunez	1	0.34	15,000	abandoned
Ve	ermilion	PAB	4	9.37	408,000	abandoned
Ve	ermilion	Tower	no data	no data	no data	abandoned
Ve	ermillion	Fontenot	no data	no data	no data	abandoned
Ve	rmillion	Pine	no data	no data	no data	abandoned
Ve	ermillion	Simon	2	no data	no data	abandoned
Po	inte Coupee	Romero	no data	no data	no data	inactive

Appendix A. Locations, names, numbers of pits or cells, total area per site of pits or cells, and operational status of CCDD sites in the database

Louisiana (continued) Land Treatment Facilities Site Parish No. Cells Cell Area (acres) Cell Area (ft2) Status Elm Grove **Bossier** 10 30.99 1,350,000 active **Bossier Bossier Parish** 10 no data no data active Jeff Davis Mermentau 25 107.90 4,700,000 active Laccassine **Jeff Davis** 11 136.59 5,950,000 inactive Lafrouche Bourg 23 79.43 3,460,000 active 5 Lafourche Lafourche Constrn. est 30.07 1,310,000 (est) inactive Pt. Coupee Western Reliable 4 25.25 1,100,000 inactive 6 St. Landry Mar Services est 30.1 1,310,000 abandoned St. Mary Bateman Island 15 78.51 3,420,000 active New Mexico Site County No. Pits Pit Area (acres) Pit Area (ft2) Status Eddy Laguna Quatro 4 2.50 108,900 inactive Lea Parabo 8 50.28 2,190,000 active Lea **CRI Halfway** 2 259.87 11,320,000 active 18 6.17 San Juan Basin 268,800 inactive Land Treatment Facilities Lea C & C Landfarm 9 217.63 9,480,000 active Rio Arriba TNT 6 no data no data active San Juan Tierra Crouch Mesa 14 72.08 3,140,000 active Oklahoma Site District County No. Pits Pit Area (acres) Pit Area (ft2) Status 2 Blaine BDK 4 22.96 1,000,000 inactive 2 Southard 6 4.02 Blaine 175,000 active 2 Blehm 12 Blaine no data no data active 2 Bryan Mitchell no data no data no data inactive 2 Arrow 10-14-5 Canadian no data no data no data inactive

Arrow Tank Trucks

2

Canadian

no data

no data

active

no data

Appendix A. Locations, names, numbers of pits or cells, total area per site of pits or cells, and operational status of CCDD sites in the database

Oklahoma (co	ntinued)					
District	County	Site	No. Pits	Pit Area (acres)	Pit Area (ft2)	Status
2	Canadian	Courtney/Briggett	4	21.69	945,000	active
2	Canadian	FPC	5	10.23	445,625	active
2	Canadian	Scott, J.	3	9.80	427,000	active
2	Canadian	Samples	5	6.03	262,725	active
2	Canadian	Arrow/Calumet	7	2.59	112,750	inactive
2	Dewey	Richardson	4	4.39	191,250	inactive
2.	Dewey	Day	2	0.69	30,000	inactive
2	Dewey	Day	2	0.69	30,000	active
2	Garfield	Gray Farms	7	12.72	554,000	inactive
2	Garfield	Gray	7	12.51	545,000	abandoned
2	Kingfisher	Great Basin	1 .	1.38	60,000	inactive
2	Major	Guard	3	28.01	1,220,000	active
2	Major	Bluff	. 3	14.08	613,320	active
,2	Roger Mills	Trout	8	44.77	1,950,000	active
2	Roger Mills	Safe Earth	1	2.41	105,000	active
2	Woods	Lojo	no data	0.36	15,625	inactive
2	Woodward	Highfill	1	13.77	600,000	inactive
3	Beckham	Stowers 27-8-21	1	0.57	25,000	inactive
3	Beckham	Pettitt	no data	no data	no data	inactive
3	Beckham	Stowers 16-8-21	no data	no data	no data	inactive
3	Caddo	H. T. S.	1	2.37	103,125	abandoned
3	Caddo	Meeks	2	1.38	60,000	inactive
3	Caddo	Grenard	1 .	1.03	45,000	inactive
3	Caddo	Big Pasture	no data	no data	no data	inactive
- 3	Caddo	Big Pasture	no data	no data	no data	active
3	Caddo	Holderman	no data	no data	no data	inactive
3	Caddo	Triple S/Big Pastures	3	no data	no data	inactive
3	Carter	Suttles	2	51.65	2,250,000	abandoned
3	Carter	Walker	3	7.75	337,500	inactive
3	Carter	Hertzler 3-5-2	2	1.76	76,500	inactive
					*	

Appendix A. Locations, names, numbers of pits or cells, total area per site of pits or cells, and operational status of CCDD sites in the database

ယ	ω	ω	ω	ω	ω	ω	ω	ω	ယ	ω	ω	ω	ω _.	ω ⁻	ယ ွ	ω	ω	ယ	ω	ω	ω	ω ·	ω	ω	ယ	ω	ω	ω	ω	District	Oklahoma (continued)
Love	Love	Love	Love	Love	Love	Love	Love	Grady	Grady	Grady	Grady	Grady	Grady	Grady	Grady	Grady	Garvin	Garvin	Garvin	Garvin	Garvin	Garvin	Garvin	Comanche	Comanche	Carter	Carter	Carter	Carter	County	ntinued)
Ricketts	Buck	Smith, G.	Banks	Banks	Bone 15-7-2	Bone 23-6-1	Scott, L.	Tash/Chitwood	Phelps	Moore	Falcon Ridge	Roadrunner	Bullard 28-3-7	Washita	Gray	Giles	Sable Mar	Eola	Pharoah	Ferguson	S&M	Peek & OMT	Ball Ranch	Sullivan	Shiflett	Kirk	Hull 20-5-2	Hull 1-6-3	Hertzler 31-5-3	Site	
no data	no data	- -	2	N			2	တ	no data	no data	no data	<u> </u>	4	6	7	2	18	18	no data	<u> </u>	6	18	4	no data	_	ڻ ت	2	2	ω	No. Pits	
no data	no data	0.52	0.63	0.63	0.69	1.03	3.96	no data	no data	no data	no data	1.32	1.86	5.98	8.49	15.61	no data	no data	no data	0.17	1.62	4.56	9.37	no data	1.95	no data	0.27	0.58	1.03	Pit Area (acres)	
no data	no data	22,500	27,500	27,500	30,250	45,000	172,500	no data	no data	no data	no data	57,500	80,900	260,500	369,875	680,000	no data	no data	no data	7,500	70,500	198,500	408,000	no data	85,000	no data	11,750	25,300	44,750	Pit Area (ft2)	
inactive	inactive	active	active	inactive	inactive	inactive	inactive	inactive	inactive	inactive	inactive	inactive	inactive	inactive	inactive	active	active	active	inactive	inactive	abandoned	inactive	inactive	inactive	inactive	inactive	inactive	inactive	inactive	Status	

Appendix A. Locations, names, numbers of pits or cells, total area per site of pits or cells, and operational status of CCDD sites in the database

Oklahoma (c	ontinued)			•		
District	County	Site	No. Pits	Pit Area (acres)	Pit Area (ft2)	Status
3	McClain	Kelly	5	41.32	1,800,000	abandoned
3	McClain	Webb/Femco	5	11.94	520,000	active
3	McClain	S & K	3	11.08	482,500	inactive
3	McClain	York	6	7.49	326,250	abandoned
3	McClain	T&S	2	4.10	178,500	active
3	McClain	Hamilton	8	3.50	152,461	abandoned
3	McClain	A & A	2	no data	no data	inactive
3	McClain	Bebout & Albrect	no data	no data	no data	inactive
3	Stephens	Poteet	. 8	9.44	411,000	active
3	Stephens	Bullard 25-2-7	4	2.07	90,000	inactive
. 3	Stephens	Wright	· 1	1.43	62,500	inactive
3	Stephens	Getty	no data	no data	no data	inactive
4	Atoka	BC	5	7.85	342,100	inactive
4	Atoka	Mabray	4	1.72	74,750	inactive
4	Atoka	McAlister	no data	no data	no data	inactive
4	Haskell	Eastern Tank	1.	2.20	96,000	inactive
4	Haskell	Bullard 21-8-22	1	0.75	32,500	inactive
4	Haskell	McCurtain	no data	no data	no data	inactive
4	Johnston	Stallings	no data	no data	no data	inactive
4	Latimer	Fluid Haulers 22-5-17	1	0.28	12,250	inactive
4	Leflore	Quick Lay Pipe	1	0.50	21,875	inactive
4	Marshall	Lee/Triple L	3	4.13	180,000	inactive
4	Marshall	Bullard 2-8-5	?	no data	no data	inactive
4	Pittsburg	Parent/Casey	3	7.23	315,000	inactive
4	Pittsburg	Smith & Williams	4	2.41	105,000	inactive
4	Pittsburg	Fluid Haulers 35-6-13	1	1.43	62,500	abandoned
2	Victoria	Superior Vacuum	1	0.31	13,600	inactive
4	Pittsburg	Fike	3	1.38	60,000	inactive
4	Pittsburg	Arrow 3-5-15	2	0.69	30,000	inactive
4	Pittsburg	Oilfield Services	3	0.46	19,875	inactive

Appendix A. Locations, names, numbers of pits or cells, total area per site of pits or cells, and operational status of CCDD sites in the database

Oklahoma (con	tinued)					
District	County	Site	No. Pits	Pit Area (acres)	Pit Area (ft2)	Status
4	Pittsburg	Sweetin & McAlister	no data	no data	no data	inactive
4	Pontotoc	Sutton	no data	no data	no data	inactive
4	Pottowatomie	O'Daniel	.7	15.56	678,000	active
4	Pottawatomie	Merkel	12	6.71	292,500	abandoned
4	Pottawatomie	Little River Express	· · 9	1.70	74,100	inactive
4	Seminole	Carr City	4	4.42	192,500	inactive
Texas						
District	County	Site	No. Pits	Pit Area (acres)	Pit Area (ft2)	Status
1	Dimmit	Wms Ranch/ Big Wells	1	0.08	3,500	inactive
1	Frio	Graham	1	0.03	1,350	inactive
2	Bee	Dahl	3	11.02	480,000	inactive
2	Burleson	Munson	5	1.89	82,300	abandoned
2 , 4 4 4	DeWitt	Koenig	1	2.48	108,000	inactive
2	Goliad	Curtis	1	0.92	40,000	inactive
2	Live Oak	R&L	1	0.26	11,500	inactive
2	Victoria	Superior Vacuum	1 .	0.31	13,600	inactive
3	Austin	A & R Lease	no data	no data	no data	inactive
3	Austin	Hardin-Racoon Bend	1	0.06	2,800	inactive
3	Brazoria	Allstate Vacuum	no data	2.75	120,000	inactive
. 3 _{1,} 1 - 1 - 1	Brazoria	Amoco	no data	no data	no data	inactive
3	Brazoria	Bloodworth	no data	no data	no data	inactive
. 3	Brazoria	Industrial Vacuum	1	0.23	10,000	inactive
3	Brazoria	K-Mac Vacuum	no data	1.38	60,000	inactive
3	Brazoria	K-Mac Vacuum	no data	1.38	60,000	inactive
3	Brazoria	Lesiker	2	5.05	220,000	inactive
3	Brazoria	Manvel	4	4.17	181,448	abandoned
3	Brazoria	Miles	1	0.66	28,750	inactive
3	Brazoria	Mudx	4	7.18	312,595	inactive
3	Brazoria	Reid Vacuum	3	0.04	1,800	abandoned
3	Brazoria	Salt Water	2	0.11	4,968	inactive
3	Brazoria	Yelderman	1	0.67	29,200	inactive

Appendix A. Locations, names, numbers of pits or cells, total area per site of pits or cells, and operational status of CCDD sites in the database

Texas (contin	ued)					
District	County	Site	No. Pits	Pit Area (acres)	Pit Area (ft2)	Status
3	Brazos	Kurten Vacuum	2	0.04	1,600	inactive
3	Burleson	Groce	1	0.22	9,500	inactive
3	Burleson	Hayton	no data	no data	no data	inactive
3	Burleson	Hopkins	no data	0.92	40,000	inactive
3	Burleson	McDaniel	no data	no data	no data	inactive
3	Burleson	Munson	5	6.43	280,000	inactive
3	Burleson	Palestine Contractors	7	2.75	120,000	inactive
3	Burleson	Porter No. 1	1	0.25	11,000	inactive
3	Burleson	Porter No. 2	1	0.25	11,000	inactive
3	Burleson	S.A.P. Vacuum	2	0.09	3,900	inactive
3	Burleson	Vollentine	no data	no data	no data	inactive
3	Chambers	Dalley Vacuum	1	0.01	600	inactive
3	Chambers	Ogden	no data	no data	no data	inactive
3	Chambers	Trant	1	9	399,360	
3	Colorado	Lundy Vacuum	no data	no data	no data	active
3	Fayette	Donco Vacuum	1	no data	no data	inactive
3	Fayette	Leuders	2	no data	no data	inactive
3	Fayette	Mica	6	3.35	146,140	inactive
3	Ft. Bend	Payne	no data	4.13	180,000	inactive
3	Ft. Bend	Subterranean	no data	no data	no data	inactive
3	Galveston	Gulf Vacuum	no data	8.26	360,000	inactive
3	Hardin	National Vacuum	no data	no data	no data	inactive
3	Hardin	Silsbee Vacuum	no data	no data	no data	inactive
3	Hardin	Smart	no data	0.34	15,000	inactive
3	Hardin	Teffoil	1	0.05	2,000	inactive
3	Harris	House	2	22.96	1,000,000	inactive
3	Harris	Vaca	no data	no data	no data	inactive
3	Jasper	L&H	4	0.002	100	inactive
3	Jefferson	Environmental	1	3.49	152,100	inactive
3	Jefferson	Hendon	9	12.24	533,000	inactive
3	Jefferson	T & L Vacuum	1	0.06	2,500	inactive
3	Lee	Roeling Vacuum	8	0.02	760	abandoned

Appendix A. Locations, names, numbers of pits or cells, total area per site of pits or cells, and operational status of CCDD sites in the database

Texas (cont	inued)					
District	County	Site	No. Pits	Pit Area (acres)	Pit Area (ft2)	Status
3	Liberty	Johnston	no data	3.10	135,000	inactive
3	Liberty	Liberty Petroluem	8	0.08	3,560	inactive
3	Madison	Donoho	no data	no data	no data	inactive
3	Matagorda	Briggs	. 1	7.17	312,500	abandoned
3	Matagorda	Fox Vacuum	7	3.49	152,233	abandoned
3	Matagorda	Sidney	no data	no data	no data	inactive
3	Matagorda	Steve's	. 1	0.01	240	inactive
3	Newton	Hendon	1	12.05	525,000	inactive
3	Newton	Longhorn	1	0.34	15,000	active
3	Tyler	Bilco	no data	0.23	10,000	inactive
3	Waller	Richter	no data	no data	no data	inactive
3	Washington	Mo-Vac	no data	no data	no data	inactive
3	Wharton	Loise Vacuum	2	0.02	654	inactive
4	Cameron	West-Stinchcomb	1	19.61	854,208	active
4	Duval	Rancho Nuevo	1	1.93	84,000	active
4	Duval	Rancho Nuevo	1	1.17	50,960	active
4	Duval	S. R.	2	2.1	91,500	abandoned
4	Duval	S. Texas Disposal	3	7.09	308,750	inactive
4	Hidalgo	Cactus Land	1	0.23	10,000	inactive
4	Hidalgo	Evins	1	1.38	60,000	inactive
4	Hidalgo	Freeman	. 1	no data	no data	inactive
4	Hidalgo	Ganaway	2	12.02	523,750	active
4	Hidalgo	Garza	1	8.26	360,000	inactive
4	Hidalgo	Mo-Vac	1	1.03	45,000	inactive
4	Hidalgo	Mo-Vac	1	0.09	4,000	inactive
4	Hidalgo	Pool	1	6.20	270,000	inactive
4	Hidalgo	Smith	1	6.00	261,352	inactive
4	Hidalgo	Texan	1	0.21	9,216	inactive
× 4	Jim Hogg	MIR-TEX	2	0.20	8,800	inactive
4	Jim Wells	Alice	1 .	2.05	89,500	active
4	Jim Wells	Alice	1	0.34	15,000	inactive

Te	xas (continue	ed)					
	District	County	Site	No. Pits	Pit Area (acres)	Pit Area (ft2)	Status
4		Jim Wells	Cadena Ranch	1	4.52	196,800	active
4		Jim Wells	Cadena Ranch	1	0.23	10,000	inactive
4		Jim Wells	Drilling	2	32.37	1,410,000	inactive
4		Jim Wells	Garcia	1	20.00	871,203	active
4		Jim Wells	Garcia	3	0.36	15,830	active
4		Jim Wells	Gwosdz	no data	no data	no data	inactive
4		Jim Wells	Koenig	1	1.15	50,000	inactive
4		Jim Wells	Mo-Vac	1	2.05	89,500	inactive
4		Jim Wells	Stubbs	2	0.38	16,600	inactive
4		Kleberg	Circle C Vacuum	1	3.67	160,000	inactive
4		Kleberg	Steve's	3	0.02	1,050	abandoned
4		Nueces	Coastal IV	1 1 1	1.27	55,350	inactive
4		Nueces	Coastal V	1	0.36	15,750	inactive
4		Nueces	Coastal VI	1 1 1	0.70	30,600	inactive
4		San Patricio	Alice	1	2.34	102,000	inactive
4		San Patricio	Havelka	1	no data	no data	inactive
.4		San Patricio	Hunt	1 . 1	no data	no data	inactive
4		San Patricio	Hunt	no data	no data	no data	inactive
4		San Patricio	Hunt	1	no data	no data	inactive
4		San Patricio	Mires	1	no data	no data	inactive
4		San Patricio	Sorenson Ranch	1	9.66	420,750	inactive
4		Webb	Canyon	1	0.77	33,750	inactive
4		Webb	Delco	2	2.30	100,000	inactive
4		Webb	Lobo	6	19.40	847,000	abandoned
4		Zapata	ARCO/Marshall	··.1	1.95	85,000	inactive
4		Zapata	ARCO/Marshall	1	1.87	81,250	inactive
4		Zapata	Bustamante	, 1	5.17	225,000	active
4		Zapata	Chihuahua	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.6	26,600	inactive
4		Zapata	Falcon Lake	2	5.02	218,488	inactive
4		Zapata	Fresh	5	0.56	25,500	inactive
4		Zapata	Nano Ranch No. 2	1	1.84	80,000	active
4		Zapata	Thrash	1	0.02	750	active

Appendix A. Locations, names, numbers of pits or cells, total area per site of pits or cells, and operational status of CCDD sites in the database

Texas (continu	ıed)					
District	County	Site	No. Pits	Pit Area (acres)	Pit Area (ft2)	Status
6	Rusk	McNeel	2	0.17	7,500	inactive
6	Rusk	McNeel	1	0.08	3,431	inactive
7B	Fisher	T. L. Carter	5	1.77	76,931	abandoned
7B	Haskell	RLA	2	0.01	360	inactive
7B	Haskell	Rule	1	?	?	abandoned
7B	Shackelford	Albany	?	?	?	abandoned
7B	Stephens	Walker-Caldwell	1	0.92	40,000	inactive
7B	Stephens	Walker-Caldwell	1	0.46	20,000	inactive
7C	Upton	M & T	⁵ 3	5.77	251,464	inactive
7C	Upton	M & T	1	0.01	225	inactive
8	Borden	Westex/Sacroc	2	1.84	80,000	active
8	Ector	Westex Notress	8	9.33	406,250	active
8	Ector	Westex Notress	1	1.55	67,600	active
9	Ector	Wright	1	1.65	71,700	inactive
8	Howard	Dorland	15	0.26	11,335	inactive
8	Winkler	Massey	2	5.74	250,000	inactive
8	Winkler	Massey	1	0.92	40,000	inactive
8A	Borden	Williams	no data	0.69	30,000	active
8A	Borden	Williams	1	2.04	89,000	active
8A	Borden	Williams		2.04	89,000	active
.8A	Borden	Williams B "DM-2"	1	5.17	225,000	active
8A	Borden	Williams/Gail	1	1.24	54,000	active
8A	Dawson	W.E.F.	1	0.0006	24	inactive
8A	Scurry	Midwestern Vacuum	10	0.34	15,000	inactive
8A	Yoakum	Kidd	no data	0.17	7,500	inactive
9	Jack	Collie	. 1 .	0.12	5,400	inactive
9	Montague	Nunneley	3	14.30	623,000	inactive
9	Montague	QOS	1	0.09	3,900	active
9	Wilbarger	Red River	2	0.02	755	abandoned
9	Wise	Gober	3	6.89	300,000	abandoned
9.	Young	Yang	1	0.25	11,070	inactive

								. 2							
014	Daniela											1			
Site:	Baudoin													100	
Location:	Vermilion Pa	rısn, L	A												
Status:	inactive														
No. Pits:	1 .														
Area:	NA														
													1.2		
Medium			Pit Sludge	100				Pit Water						roundwater	
	Dates	n	Range (mg/kg)	Avg		Dates	n	Range (mg/L)		Avg		Dates	n	Range (mg/L)	Avg
pН						2/80	1	6.8		6.8					
Calcium						2/80	1	60		60 .	- 1		175		
Chloride			7			2/80	.1	1,100	1	,100					
	·						·								
Site:	Big Diamond														
Location:	Cameron Pa	rish, L	A	- 2											
Status:	abandoned														
No. Pits:	5								. 1						
Area:	32.6 acres (1	1.42 m	illion π-)												
Medium			Pit Sludge			-		Pit Water	4					roundwater	4.2
	Dates	n	Range (mg/kg)	Avg		Dates	n	Range (mg/L)	,	Avg		Dates	n	Range (mg/L)	Avg
pH	7/90-6/98	49	6.35-8.23	7.80						1		11/88-5/98	9	5.64-6.72	6.17
Conductivity (μ)	7/90-6/98	27	1,200-30,000	7,674		7/90	1	4,110	4	,110		11/88-5/98	19	1,420-27,300	9,329
TDS .				1.1								11/88	11	858-18,407	6,439
Arsenic	8/87-6/98	55	0.113-8.824	0.93		7/90	1	1.46		1.46	100	11/88	11	<0.01-0.01	<0.01
Barium	8/87-6/98	60	220-59,950	16,048		7/90	1	44,556		1,556		11/88	11	<0.01-0.57	0.17
Cadmium	8/87-6/98	42	0-1.72	0.29		7/90	1	0.28		0.28		11/88	11	<0.01	<0.01
Calcium	8/87-7/90	9	317-1,580	909											
Chloride						7/90	9 .	14.8-3,700		,552		11/88-5/98	28	36.7-10,847	3,195
Chromium	8/87-6/98	55	5.86-177.9	56.2		7/90	1	156.9	1	56.9		11/88	11	<0.01-0.06	0.02
Copper	8/87	6	1.54-3,020	1.036											
Iron	8/87	. 6	520-7,270	3,533											
Lead	8/87-6/98	28	0-165.7	43.3		1 -						11/88	11	0.06-0.57	0.24
Magnesium	8/87-7/90	9	49-1,020	448	7							1.7			
Manganese	8/87	6	25-380	91.6											
Mercury	8/87-6/98	55	<0.0001-0.99	0.22		7/90	- 1	0.11	(0.11		11/88	11	<0.002-0.003	0.002
Nickel	8/87	6	1.73	14.2											
Palladium	5/98	26	0.65-165.7	37		7/90	1	98.5		98.5					
Selenium	7/90-6/98	48	0.2.89	0.34		7/90	1	0.27	. ().27		11/88	11	< 0.001	< 0.001
Silver	7/90-6/98	29	0-0.43	0.06		7/90	1	0.03		0.03		11/88	11	<0.01	<0.01
Sodium	7/90	3	836-3,256									11/88	11	144-3,000	932
Zinc	8/87-6/98	60	3.46-489.5	106.8		7/90	. 1	99.87	9	9.87		11/88	1,1	<0.01-2.48	0.24
O&G (%)	8/87-6/98	45	0-7.15	0.96		7/90	1	7.0		7.0		11/88-5/98	19	0.9-4	1.64
Benzene												11/88	1	<0.001	< 0.001
Toluene												11/88	1	<0.005	< 0.005
Bbls. Rec'd	1978-84		789,620												
Site:	Castex										, ' ,		- :		
Location:	Jefferson Da	vis Pa	rish, LA											100	
Status:	abandoned														
No. Pits:	11														100
Area:	4.9 acres (21	3,125	ft ²)												-
Medium			Pit Sludge					Pit Water					G	roundwater	
	Dates	n	Range (mg/kg)	Avg		Dates	n	Range (mg/L)	1, 1	Avg		Dates	'n	Range (mg/L)	. Avg
pН	9/87-11/87	7	7.69-8.08	7.85								1/86-1/87	10	6.66-7.65	7.18
Conductivity (µ)	9/87-11/87	7	3,910-78,000	29,887								1/86-1/87	10	700-64,800	32,300
TDS						4						1/86-1/87	10	412-37,535	18,730
Arsenic	9/87-11/87	7	9.8-13.1	11.9											
Barium	9/87-11/87	7	9,800-13,200	11,468											
Cadmium	9/87-11/87	7	1.7-4.3	2.5											
Calcium	9/87-11/87	7	346.7-3,597	1130.8											
Chloride												10/82-6/87	14	100-22,867	13,859
Chromium	9/87-11/87	7	116-325	241.8											
Lead	9/87-11/87	7	72-252	176.2											
Magnesium	9/87-11/87	7	30.4-189.6	96.4											
Mercury	9/87-11/87	7	1.7-2.3	2.1								*			
Potassium	9/87	1	26	26											
Selenium	9/87-11/87	7	0.4-1.1	0.6											4
Silver	9/87-11/87	7	1.9-2.4	2.1			100								
Sodium	9/87-11/87	7	430-5,956	3,246								1/86-1/87	10	81-14,120	6,341
Zinc	9/87-11/87	7	360-1,120	842.0											
Bbls. Rec'd	1982-84		75,000												

Site:	Chaddick								
ocation:									
	Acadia Parish, LA								
tatus:	inactive								
lo. Pits:	1								
\rea:	NA			•					
/ledium	Pit Sludge				Pit Water			Groundwater	
	Dates n Range (mg/kg)	Avg	Dates	з п	Range (mg/L)	Avg	Dates	n Range (mg/L)	Avg
rsenic	1/81 1 <0.01	<0.01						range (mg/2)	, g
eryllium	1/81 1 <0.005	<0.005							
hromium	1/81 1 <0.003	<0.003							
ead	1/81 1 <0.01	<0.01							
inc	1/81 1 0.3	0.3							
enzene	1/81 1 1.5	1.5							
thylbenzene	1/81 1 0.1	0.1			•				
oluene	1/81 1 1.06	1.06							
Other: Cyanide	1/81 1 0.07	0.07							
		5151							
ite:	Folse Farms		***				 		
ocation:	Bossier Parish, LA								
tatus:	inactive					-			
lo. Pits:	NA								
Area:	NA								
Medium	Dit Olada				Pit Water				
lealum	Pit Sludge							Groundwater	
	Dates n Range (mg/kg)	Avg	Dates		Range (ppm)	Avg	Dates	n Range (ppm)	Avg
hloride			1/82	1	422.5	422.5			
ite:	Gulf Coast Vacuum								
ocation:	Vermilion Parish, LA								
tatus:	active								
lo. Pits:	NA .								
rea;	NA								
edium	Pit Sludge				Pit Water	•		Groundwater	
	Dates n Range (mg/kg)	Avg	Dates	n	Range (mg/L)	Avg	Dates	n Range (mg/L)	A
senic		5	24.00		rango (mg/L)	/\ ' 9			Avg
arium									0.052
admium								1 0.06-0.29	0.17
								1 0.001	0.001
opper					* .		4/93	1 0.005-0.085	0.045
on			•				4/93	1 0.01-8.26	4.14
ead							4/93	1 0.004	0.004
anganese					:			1 0.01-1.07	0.54
inc	•							1 0.003-1.24	0.61
							7/00	. 0.000-1.24	0.01

Lecation: SI, Mary Parish, LA Inactive Inactive No. Pile: NA No. Pile													
Silbus: inactive No. Pris: NA Area: NA No. Pris: NA No. Pris	Site:	Marine Vacuum											
No. Pits: NA Medium			Α										
Area: NA- Medium Pit Sludge Pit Sludge Pit Water Dates Range (mg/kg) Avg	Status:	inactive											
Medium	No. Pits:	NA											
Medium	Area:	NA											
Martimory 1/80 1 13.3 3.3													
Martimory 1/80 1 13.3 3.3	Medium		Pit Sludge					Pit Water				Groundwater	
Antimony 1/80 1 13.3 13.3 Ansenic 1/80 1 49.29 49.29 Bergillum 1/80 1 149.2 182 182 Cadmium 1/80 1 112.58 112.58 Cadmium 1/80 1 113.58 112.58 Chromium 1/80 1 13.5667 139.667 139.667 139.667 139.667 149.567		Dates n		Ava		Dates	n		Ava		Dates		Δνα
Arsenic 1980 1 48-29 49-29	Antimony							90 (9, =/	79		Datoo	ii range (mg/L)	7.V9
Baryllium 1/80 1 192 192 192 192 Candmium 1/80 1 11.28 192 Candmium 1/80 1 11.28 11.28 11.286 Chromium 1/80 1 13.0867 139.0877 42.787													
Cadmium 1/80 1 11,288 11,288 11,288 11,288 11,288 11,288 11,288 11,288 11,288 11,288 11,288 11,289 180 1 180 1 20,002 20,002 20,002 20,002 20,002 20,002 20,002 20,002 20,002 20,002 20,002 20,002 20,002 20,002 20,002 20,002 20,002 20,002 20,004 20,002 20,002 20,004 20,002 20,004 20,002 20,004 20,002 20,004 20,002 20,004 20,00												1.14	
Chromium 180 1 19.687 19.687 19.687 Copper 180 1 42.787 42.787													
Copper													
Lead										,			
Mercury													
Nickel 1/80 1 23.042 23.042 Steinhum 1/80 1 6.81 88.01 8						4							
Selenium 1/80 1 68.01 8.01 8.01 8.01													
Silver 1/80 1 1,913 1,91													
Thalilum 1/80 1													
Zinc													
Benzene 1/80 1 14.6 14.6 Ethylbenzene 1/80 1 22.4 22.4 Columne 1/80 1 46.6 46.8 Columne 1/80 1 46.6 46.8 Columne 1/80 1 6.4 6.4 Columne 1/80 1 8.4 6.4 Columne 1/80 1 8.5 9.6 Columne 1/80 1 8.6 9.6 Columne 1/80 1 9.6 9.6 Columne 1/80 1 7.9 7.9 Columne 1/80 1 7.9 7.9 Columne 1/80 1 6.9 6.9 Columne 1/80 1 7.9 7.9 Columne 1/80 1 6.9 6.9 Columne 1/80 1 6.9 Columne 1/80 Columne 1/80 1 6.9 Columne 1/80 Column													
Ethybenzane 1/80 1 22.4 22.4 Totuene 1/80 1 46.6 46.6 Other: Phenol 1/80 1 6.4 6.4 Vaphthalene 1/80 1 9.6 9.6 Other: Phenol 1/80 1 9.6 9.6 Other: Phenol 1/80 1 9.6 9.6 Steel 1/80 1 9.8 9.6 Other: Phenol 1/80 1 7.9 7.9 Accenaphthylene 1/80 1 7.9 7.9 Accenaphthylene 1/80 1 6.9 6.9 Steel 1/80 1 9.8 9.6 Other: Phenol 1/80 1 9.6 9.6 Steel 1/80 1 9.8 9.6 Other: Phenol 1/80 1 0.9 9.6 Other: P						1.5							
Toluene 1/80 1 46.6 46.6 Other: Phenol 1/80 1 6.4 6.4 Naphthalene 1/80 1 9.5 9.6 Acenaphthere 1/80 1 9.5 9.6 Acenaphthylene 1/80 1 6.9 6.9 Site: Mar-Low Location: Acadie Parish, LA Status: inactive No. Pits: NA Area: NA Medium Pits Location: La four-che Parish, LA Status: inactive No. Pits: NA Na Pit Sludge Pit Water Pit Water Na Pit Sludge Pit Water Na Pit Sludge Pit Water Pit Water Na Pit Sludge Pit Water Na Pit Sludge Pit Water Pit Water Na Pit Sludge Pit Water Pit Water Pit Water Pit Water Na Pit Sludge Pit Water Pit Water Na Pit Sludge Pit Water Pit Water Na Pit Sludge Pit Water Pit Water Pit Water Pit Water Na Pit Sludge Pit Water Pit Water Na Pit Sludge Pit Water Pit Wate													
Other: Phenol 1/80 1 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.5 6	•												
Naphthalene													
Methyl Chloride 1/80 1 9.6 9.6 Acenaphthylene 1/80 1 7.9 7.9 Acenaphthylene 1/80 1 6.9 6.9 Sitie: Mar-Low Location: Acadia Parish, LA Status: inactive No. Pits: NA Area: NA Medium Pit Sludge Pit Water Groundwater Nagas 2 420-985 702.5 Sitie: Mud Pits Status: inactive No. Pits: NA Pit Sludge Pit Water Sitie: Site: Mud Pits Site: Na Pit Sludge Pit Slud													
Acenaphthylene 1/80 1 7.9 7.9 Acenaphthylene 1/80 1 6.9 6.9 Site: Mar-Low Location: Acadia Parish, LA Status: inactive No. Pits: NA Area: NA Medium Pits Studge Pit Water Groundwater Nange (mg/kg) Avg Dates n Range (mg/L) Avg Dates n Range (mg/L) Avg Pit Water 9/83 2 7.9-8.02 7.96 Conductivity (µ) 9/83 2 420-985 702.5 Chloride 9/80 1 5.86 5.86 Dates n Range (mg/kg) Avg Dates n Range (mg/L) Avg Dates n Range (mg/L) Avg Ng83 2 146-203 174.5 Site: Mud Pits Status: inactive No. Pits: NA Area: NA Medium Pit Sludge Pit Water Groundwater No. Pit Water Ng83 2 146-203 174.5 Status: inactive No. Pits: NA Area: NA Medium Pit Sludge Pit Water Groundwater No. Pit Water Ng83 2 146-203 174.5 Status: inactive No. Pits: NA Area: NA Medium Pit Sludge Pit Water Groundwater Nange (mg/L) Avg Dates n Range (mg/L) Avg Ng83 2 146-203 174.5 Status: inactive NA Medium Pit Sludge Pit Water Groundwater Nange (mg/L) Avg Ng83 2 174-203 174.5 Status: inactive NA Medium Pit Sludge Pit Water Groundwater Nange (mg/L) Avg Ng83 2 174-203 174.5 Status: inactive NA Medium Pit Sludge Pit Water Groundwater Nange (mg/L) Avg Ng83 2 174-203 174.5													
Acenaphthylene 1/80 1 6.9 6.9 Site: Mar-Low Location: Acadia Parish, LA Status: inactive NA Area: NA Medium Pit Studge Parish Arga (mg/kg) Avg Dates n Range (mg/L) Avg Dates n Range (mg/L) Avg Pit Studge Pit Status: Inactive NA Area: NA Medium Pit Studge Pit Studge Pit Water Pit Studge Pit Studge Pit Water Pit Water Pit Water Pit Studge Pit Studge Pit Water Pit Studge Pit Studge Pit Studge Pit Water Pit Wa													
Site: Mar-Low Location: Acadia Parish, LA Status: inactive Inac													
Location: Acadia Parish, LA Status: inactive No. Pits: NA Area: NA Medium Pit Sludge Pates n Range (mg/kg) Avg Dates n Range (mg/L) Avg Dates n Range (mg/L) Avg Pit Sludge Pit Sludge Pit Sludge Pit Sludge Namper	Acenaphthylene,	1/80 1	6.9	6.9									
Status:	Site:	Mar-Low	· · · · · · · · · · · · · · · · · · ·			***				-		<u> </u>	
No. Pits: NA Area: NA Medium Pit Sludge Dates n Range (mg/kg) Avg Dates n Range (mg/L) Avg Dates n Range (mg/L) Avg Dates n Range (mg/kg) Avg Dates n Range (mg/L) Avg Dates n Range (mg/L) Avg Pit Water P/83 2 7-9-8.02 7-96 Pit Water P/83 2 420-985 702.5 Pit Water P/83 2 292-351 321.5 Chloride Mud Pits Lafourche Parish, LA Status: inactive No. Pits: NA Area: NA Medium Pit Sludge Pit Water Pi	Location:	Acadia Parish, LA											
Area: NA Medium Pit Sludge Dates n Range (mg/kg) Avg Dates n Range (mg/L) Avg Dates n Range (mg/L) Avg Pit Water Dates n Range (mg/kg) Avg Dates n Range (mg/L) Avg Pit Water Conductivity (μ) 9/83 2 7.9-8.02 7.96 Pit Sludge 9/83 2 7.9-8.02 7.96 Pit Sludge 9/83 2 146-203 174.5 Site: Mud Pits - cocation: Lafourche Parish, LA Sites: inactive No. Pits: NA Area: NA Medium Pit Sludge Pit Sludge Pit Water Dates n Range (mg/kg) Avg Dates n Range (mg/L) Avg Dates n Range (mg/L) Avg Arsenic 9/80 1 5.86 5.86 - Copper 9/80 1 12.5 12.5 - Lead 9/80 1 38.25 38.25 - Senzene 9/80 2 0.96-153.2 77 - Sithylbenzene 9/80 1 38.25 38.25	Status:	inactive											
Medium Pit Sludge Pit Water Dates n Range (mg/kg) Avg Dates n Range (mg/L) Avg	No. Pits:	NA											
Dates n Range (mg/kg) Avg Dates n Range (mg/L) Avg Av	Area:	NA										, ,	
Dates n Range (mg/kg) Avg Dates n Range (mg/L) Avg Av		•			•								
Dates n Range (mg/kg) Avg Dates n Range (mg/L) Avg Av	Medium		Pit Sludge					Pit Water				Groundwater	
PH Conductivity (μ) Conductivity (μ) TDS Chloride Mud Pits Location: Lafourche Parish, LA Status: inactive No. Pits: NA Area: NA Medium Pit Sludge Pit Water Dates n Range (mg/kg) Avg Dates n Range (mg/L) Avg Dates n Range (mg/L) Avg Arsenic 9/80 1 5.86 5.86 Copper 9/80 1 12.5 12.5 Lead 9/80 1 38.25 38.25 Beacagene 9/80 2 0.96-153.2 77 Eithylbenzene 9/80 2 0.16-59.8 35		Dates n.	Range (mg/kg)	Avg		Dates	n		Ava		Dates		Ava
Pit Sludge	pH .												
TDS	Conductivity (µ)												
Chloride 9/83 2 146-203 174.5 Site: Mud Pits Location: Lafourche Parish, LA Status: inactive No. Pits: NA Area: NA Wedium Pit Sludge Pit Water Dates n Range (mg/kg) Avg Dates n Range (mg/L) Avg Dates n Range (mg/L) Avg Arsenic 9/80 1 5.86 5.86 Copper 9/80 1 12.5 12.5 Lead 9/80 1 38.25 38.25 Banzene 9/80 2 0.96-153.2 77 Eithylbenzene 9/80 2 0.1-69.8 35	TDS			100									
Site: Mud Pits ocation: Lafourche Parish, LA Status: inactive No. Pits: NA Area: NA Medium Pit Sludge Pit Water	Chloride												
Lafourche Parish, LA Status: inactive No. Pits: NA Area: NA Medium Pit Sludge Pit Water Groundwater Dates n Range (mg/kg) Avg Dates n Range (mg/L) Avg Dates n Range (mg/L) Avg Arsenic 9/80 1 5.86 5.86 Copper 9/80 1 12.5 12.5 Lead 9/80 1 38.25 38.25 Senzene 9/80 2 0.96-153.2 77 Eithylbenzene 9/80 2 0.16-9.8 35												2 140 250	
Status: inactive No. Pits: NA Area: NA Medium Pit Sludge Pit Water Groundwater Dates n Range (mg/kg) Avg Dates n Range (mg/L) Avg Dates n Range (mg/L) Avg Arsenic 9/80 1 5.86 5.86 Copper 9/80 1 12.5 12.5 Lead 9/80 1 38.25 38.25 Benzene 9/80 2 0.96-153.2 77 Ethylbenzene 9/80 2 0.1-69.8 35	Site:												,
No. Pits: NA Area: NA Medium Pit Sludge Pit Water Groundwater Dates n Range (mg/kg) Avg Dates n Range (mg/L) Avg Dates n Range (mg/L) Avg Arsenic 9/80 1 5.86 5.86 Copper 9/80 1 12.5 12.5 Lead 9/80 1 38.25 38.25 Benzene 9/80 2 0.96-153.2 77 Ethylbenzene 9/80 2 0.1-69.8 35	Location:	Lafourche Parish, L	Α										
Area: NA Medium Pit Sludge Pit Water Groundwater Dates n Range (mg/kg) Avg Dates n Range (mg/L) Avg Dates n Range (mg/L) Avg Arsenic 9/80 1 5.86 5.86 Copper 9/80 1 12.5 12.5 Lead 9/80 1 38.25 38.25 Banzene 9/80 2 0.96-153.2 77 Ethylbenzene 9/80 2 0.1-69.8 35	Status:	inactive	*										
Medium Pit Sludge Pit Water Groundwater Dates n Range (mg/kg) Avg Dates n Range (mg/L) Avg Dates n Range (mg/L) Avg Arsenic 9/80 1 5.86 5.86	No. Pits:	NA			4.1								
Dates n Range (mg/kg) Avg Dates n Range (mg/L) Avg Dates n Range (mg/L) Avg	Area:	NA											
Dates n Range (mg/kg) Avg Dates n Range (mg/L) Avg Dates n Range (mg/L) Avg													1.4
Dates n Range (mg/kg) Avg Dates n Range (mg/L) Avg Dates n Range (mg/L) Avg	Medium		Pit Sludge					Pit Water				Groundwater	
Arsenic 9/80 1 5.86 5.86 Copper 9/80 1 12.5 12.5 Lead 9/80 1 38.25 38.25 Benzene 9/80 2 0.96-153.2 77 Ethylbenzene 9/80 2 0.1-69.8 35		Dates n		Avg		Dates	n		Ava		Dates		Ava
Copper 9/80 1 12.5 12.5 Lead 9/80 1 38.25 38.25 Senzene 9/80 2 0.96-153.2 77 Ethylbenzene 9/80 2 0.1-69.8 35	Arsenic							· · · · ·				· ·-···g- (···/g/=/	
Lead 9/80 1 38.25 38.25 Benzene 9/80 2 0.96-153.2 77 Ethylbenzene 9/80 2 0.1-69.8 35	Copper												
Benzene 9/80 2 0.96-153.2 77 Ethylbenzene 9/80 2 0.1-69.8 35	Lead												
≣thylbenzene 9/80 2 0.1-69.8 35	Benzene					9/80	2	0.96-153.2	77				
	Ethylbenzene			1 1									
	Toluene												
									.51				

i oluene	Ethylbenzene	Benzene	Zilic	7inallulii	JIVE!	Selenium	Nickel	Mercury	Lead	Copper	Chromium	Cadmium	Beryllium	Arsenic	Antimony		Medium		Area:	No. Pits:	Status:	Location:	Site:	G	Organics	Zinc	Vanadium	Thelling	Silver	Selenium	Potassium	Nickel	Mercury	Manganese	Magnesium	Lead	lron :	Copper	Cobalt	Chromium	Calcium	Cadmium	Beryllium	Rarium	Arsenic	Antimony	Aluminum	Medium		Area:	No. Pits:	Status:	Site: Location:	
6/80	6/80	6/80	0/80	6/80	0/80	6/80	6/80	6/80	6/80	6/80	6/80	6/80	6/80	6/80	6/80	Dates			N _P	_	inactive	St. Mary's Parish, LA	Oil Base	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4/90	4/90	4/90	4/90	4/90	4/90	4/90	4/90	4/90	4/90	4/90	4/90	4/90	4/90	4/90	4/90	4/90	4/90	4/90	4/90	4/90	4/90	4/90	Dates		0.34 acres (15,000 ft ²)		abandoned	Nunez Vermilion Parish, LA	
	بـ.				٠ -			. 		_	· <u>-</u>	_				n Ra	Pits					arish, LA			. .				٠						_	_	_	_	- .			_	 .	. .	_	_ .	:	n Pits	!	5,000 ft ²)			rish, LA	
c	0	10.02	<u></u>	0.01	0.002	9	<0.005	<0.002	0	c	0	<0.001	0	-	<0.01	Range (mg/kg)	ludge						-		a :	35.1	26.0	40	<u> </u>	. 4	1,530	14.5	6.1	222	2,420	7	13,200	8.3	6.4	16.8	1.520	4	Δ ;	186	283	& !	14.400	Pit Sludge						
c	0	10.0	2	6.0	0.002) }	<0.005	<0.002	0	ć	0	<0.001	0		<0.01	Avg								ā	a :	35.1)6 <u>/</u>	, 6 1	§ A		1,530	14.5	0.1	222	2,420	7	13,200	8.3	6.4	16.8	1.520	4	4 5	186	283	<u>ه</u>	14.400	Avo						
																Dates		-																														Dates						
																-																															;	5						
																Range (mg/L)	Pit Water												٠																		9-7	Pit Water	!					
																Avg													·																		ë	Avo						
																Dates								0,00-0,00	5/00 0/00	5/90-9/90	5/90-9/90	5/90-9/90	5/90-9/90	5/90-9/90	5/90-9/90	5/90-9/90	5/90-9/90	5/90-9/90	5/90-9/90	5/90-9/90	5/90-9/90	5/90-9/90	5/90-9/90	5/90-9/90	5/90-9/90	5/90-9/90	5/90-9/90	5/90-9/90	5/90-9/90	5/90-9/90	5/90-9/90	Dates						
																3	ଦ୍ର							4	٠.	P. 4	4 4	4.	4	4	4	4	.4	4	4	4	4	4	4.	4	٠ 4	4	4	٠.	4	. 4	. 4	် ရ						
																n Range (mg/L)	Groundwater							č	50.00	<0.02	A).005	201-3,/10	<0.01	<0.005	4-294	<0.02-0.034	0-0.0004	0.02-3.31	0.163-46.2	<0.003-0.013	<0.054-6.36	<0.02-0.063	<0.01	<0.01-0.101	0.5-131	<0.005	<0.005	1 02-3 07	<0.005	<0.03	0.054-5.53	Groundwater						
																Avg								Ē	2 0	0.056	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1,120	^0.01	<0.005	78.4	0.024	0.0003	1.39	3	0.0055	1.72	0.04	^ 0.01	<0.01	89.8	<0.005	<0.005	17	<0.005	<u>\$0.03</u>	J (A NO						

Bbls. Rec'd.	Kv (cm/s)	Anphatic HC	C3 Naph., iso 5	C3 Naph., iso 4	C3 Naph., iso 3	C3 Naph., iso 2	C3 Naph., iso 1	C2 Naph., iso 3	C2 Naph., iso 2	C2 Naph., iso 1	C1 Naph., iso 2	C1 Naph., iso 1	Naphthalene	1,1,1-trichloroethane	Methyl Chloride	bis(2-ethylhexyl)phthalate	Cyanide	BTEX	700	Zinc	Vanadium		Thallium	Sulfide	Silver	Selenium	Nitrate	Nickel	Mercury	Manganese	Magnesium	Lead	ron	Copper	Cobalt	Chromium	Chloride	Calcium	Cadmium	Boron	Beryllium	Barium	Arsenic	Antimony	Aluminum	뫄		Medium	Area:	No. Pits:	Status:	Foodulo!!
				_	~		_			_		_		thane		ا)phthala																																				
1978-83		10/80	10/80	10/80	10/80	10/80	10/80	10/80	10/80	10/80	10/80	10/80	10/80			ate			;	10/80		, ci	10/80		10/80			10/80				10/80		10/00		10/80			10/80		10/80		10/80	10/80			Dates		9.4 acres (408,000 ft*)	4	abandoned	· · · · · · · · · · · · · · · · · · ·
	•	2	2	2	2	2	2	2	2	2	N	2	2							Ν.		1	s		2	٠.		2				N		٨	•	2			2		N		2	2			=		08,000	3		
>99,063	2E-5 - 1E-8	major	110-160	230-320	330-360	440-560	190-220	240-270	700-710	450-530	380	450-500	230-280							18.2-58.6		0.0	^3 R_^4 л		<14.6-<18			<14.6-<18				<21.9-<27		<14.0-<10		18.9-21.2			<14.6-<18		<14.6-<18		13.1-16.2	<7.3-<9			Range (mg/kg)	Pit Sludge	J	ģ		•
			135	275	345	500	205	255	705	490	380	475	255							38.0000			4 10		16			16				24		ē		20			16		16		15	8.15) Avg					
																				_																																
								-																																												
																			10/80-3/83	3/83	10/80	10/80	10/80	10/80	10/80	10/80	10/80	10/80	10/80	10/80	10/80	10/80-3/83	10/80	10/80	10/80	10/80-3/83	3/83	10/80	10/80-3/83	10/80	10/80	10/80	10/80	10/80	10/80	10/80	Dates					
																		(ا بد	ν.	<u> </u>	<u>.</u> _	٠.	ـ ـ	<u> </u>	_	_	_	_	_	٠ هــ	ω.				ω	2	>	ω	_	_	_	_		_	<u>.</u>	5					
																			25-445	0 0004-0 007	0.09	0.68	2 6	4,600	<0.02	0.086	0.73	0.02	<0.001	0.083	140	0.0002-0.039	- t - t	^0.01	<0.01	0.006-0.093	1982-2004	1,500	0.0001-0.049	3.9	<0.02	4.1	0.026	<0.02	0.24	7.3	Range (mg/L)	Pit Water				
																																														٠,						
																		ļ	24.2	0 0007	0.00	0.24	2 6	4,600	△0.02	0.086	0.73	0.02	<0.001	0.083	140	0.0196	1 4	<0.011	<0.01	0.031	1993	1500	0.016	3.9	<0.02	4	0.026	<0.02	0.24	7.30	Avg					
																																																•				
														10/80	10/80	10/80	10/80	10/80	10/80-3/83	10/80	10/80	10/80	10/80	10/80	10/80	10/80	10/80	10/80	10/80	10/80	10/80	10/80	10/80	10/80	10/80	10/80	10/80	10/80	10/80	10/80	10/80	10/80	10/80	10/80	10/80	10/80	Dates					
														ω	ω	ω	1 0	. .	۱ د	3 - N	. .) N		, N	2	N	2	2	2	N 1	2 1	0 1	3 N	N	ν,	2	2	2	N	2	2	2	2	2	2	ν:	5	ര				
														nd-0.2	nd-0.02	nd-0.02	<u>م</u>	3 :		0 0110	0.04-0.0	20.01	A 0.05	58-63	<0.02	<0.01	0.23-0.	<0.02	<0.001-0.	0.26	13 5	<u>.</u>	10.98	<0.01	<0.01	<0.01	38-21:	33-36	<0.00	0.14-0.	<0.00	0.073-0.0	<0.01	<0.02	<0.05	6.9-7.	Range (m	Groundwater				

Avg 7,000 6,

Site:		Simon														
Location:		Vermilion LA		-												
Status:		abandoned														
No. Pits:		2														
Area:		NA NA														
,		144														
Medium				Pit Sludge						Pit Water				Groundwat	·0F	
	•	Dates	n	Range (mg/kg)	Avg		D	ates	n	Range (mg/L)	Av	,n .	Dates	n Range		Avg
pH						- 1		/80	4	7.2-7.5	7.		Daics	ii italige	(mg/L)	, Avg
Aluminum								6/80	4	<0.005-0.67	0.2					
Antimony								6/80	4	<0.05	<0.					
Arsenic								6/80	4	<0.001-0.024	0.0					
Barium								/80	4	0.16-0.64	0.4					
Beryllium				100				/80	4	<0.002	<0.0					
Boron								/80	4	0.019-2.7	0.8					
Cadmium								6/80	4	<0.005	<0.0					
Calcium								i/80	4	41-445	28					
Chromium								/80	4	<0.01-0.017	0.0					
Cobalt								/80	4	<0.01	<0.					
Copper								i/80 i/80	4	<0.01	<0.					
Fluoride									4							
Iron								/80		0.2-1.0	1					
Lead								/80 /80	4 4	1.4-1.6	1.					
Magnesium								/80 5/80	4	<0.04-1.6	0.4					
Manganese									4.	14-35	. 20					
Mercury				4.75				/80 /80		0.036-1.4	0.3					
Nickel				1					4	<0.001	<0.0					
Selenium								/80	4	<0.02-0.023	0.0					
Silver								/80	4	<0.01-0.045	0.0					
Sodium				4 2 4				/80	4	<0.02	<0.					
Sulfide								/80	4	84-3,300	89					
Thallium				4				/80	4	<0.05	<0.					
Tin								/80	4	<0.01-0.086	0.0					
Vanadium								/80	4	<0.06-0.45	0.1					
								/80	4	<0.014-0.062	0.0					
Zinc TOC								/80	4	0.012-0.68	0.3					
100							6	/80	4	<2	<2	2				
Site:		Tidrow											 			
Location:		St. Mary Parisl	ьіл													
Status:		inactive	11, LA													
No. Pits:		1														
Area:		NA														
Alea.		INA .														~
Medium				Pit Sludge						Dit Weter						
Wedium		Dates	n	Range (mg/kg)	Avg	٠.	η.	ates	· n	Pit Water Range (mg/L)	۸.,		Dates	Groundwat		
Antimony		9/80	2	1.97-2.24	2.11		D,	ales	- 11	Range (mg/L)	Av	g	Dates	n Range	(mg/L)	Avg
Arsenic		9/80	2	1.46-2.69	2.08											
Beryllium		9/80	2.	<0.005-11.22	5.6											
Cadmium		9/80	2	0,857-1.373	1.12											
Chromium		9/80	2	9.155-12.627	10.9											
Copper		9/80	2	9.69-13.572	11.6											
Lead		9/80	2	23.58-43.2	33.4											
Mercury		9/80	2	<0.002	<0.002											
Nickel		9/80	2	3.564-5.426												
Selenium		9/80	2	<0.01-0.64	4.5 0.32											
Silver		9/80	2	<0.002-0.593	0.3								1.44			
Thallium		9/80	2	<0.01	<0.01											
Zinc		9/80	2	53.88-107.97	80.9											
Benzene		9/80	1	0.01	0.01											
Ethylbenzene		9/80	1	0.01	0.01									V.,		
Toluene		9/80	1	0.02	0.02											
Other: Cyanide		9/80	1	0.28	0.28											
Phenol		9/80	1	16	16				100							
Chlor. Organics		9/80	1	6.81	6.81											

Site:	Waguespack													
ocation:	Iberia Parrish	ı, LA												
Status:	inactive													
lo. Pits:	7													
Area:	10.25 acres ((446.5	16 ft ²)						100					
		(, .												
Medium			Pit Sludge					Pit Water	* 1					
viculum	D-4			A		D-4					.		roundwater	
-11	Dates	n	Range (mg/kg)	Avg		Dates	n	Range (mg/L)	Avg		Dates	, n	Range (mg/L)	Avg
oH											5/84-8/94	56	6.27-7.68	7.10
Conductivity (μ)								1			5/84-8/94	56	300-2,420	991
TDS											5/84-8/94	56	15-1,644	374.00
Arsenic											8/92	8	0-0.005	0.001
Barium											8/92	. 8	0.057-1.16	0.66
Chloride						8/82-1/85	11	479-2,400	1,127		5/84-8/94	56	8-654	132.00
Chromium											8/92	8	0-<0.05	<0.05
Lead								the state of			8/92	8	<0.06	<0.06
Sodium											8/92	8	83-329	164.00
Zinc						100					8/92	8	0.009-0.094	0.03
O&G (%)														
											8/87-8/92	15	<1-6.25	2.29
Kv (cm/s)			6.9E-08-5.5E-09											
Site:			nd Treatment											
Location:	St. Mary's Pa	arish, l	-A											
Status:	active													
No. Cells:	15		and the second second											
Area:	78.1 acres (3	3.4 mil	lion ft ²)						5.0					
Medium			Cell Sludge					Sump Water		10.0		G	roundwater	
	Dates	n	Range (mg/kg)	Avg		Dates	n	Range (mg/L)	Avg		Dates	, n	Range (mg/L)	Avg
pН	7/99-4/00	39	7.4-8.7	8.00		7/99-5/00	32	7.4-8.7	7.60		7/99-5/00	80	6.2-7.6	6.9
Conductivity (µ)	7/99-4/00	39	3,100-59,000	18,692		7/99-5/00	32	400-88,000	11506					
TDS	1133-4100	33	3,100-33,000	10,032						200	7/99-5/00	80	600-6,000	1,880
	=100 1100					7/99-5/00	32	230-75,912	6476		7/99-5/00	80	72-3,620	1,273
Arsenic	7/99-4/00	39	2-3.5	2.83		7/99-5/00	32	<0.01	<0.01		7/99-5/00	80	<0.01	<0.01
Barium	7/99-4/00	39	541-160,409	86,322		7/99-5/00	32	<0.1-43.3	9.18		7/99-5/00	80	<0.1-2.4	0.67
Cadmium	7/99-4/00	39	0-0.8	0.41										
Chloride	7/99-4/00	39	14-635	99.5							7/99-5/00	80	43-2,526	544
Chromium	7/99-4/00	39	14-150	68.2		7/99-5/00	32	<0.05	<0.05		7/99-5/00	80	<0.05	<0.05
Lead	7/99-4/00	39	10-184	72.2		7/99-5/00	32	<0.05	<0.05		7/99-5/00	80	<0.05	<0.05
Mercury	7/99-4/00	39	0-0.9	0.45		.,					7700-0700	00	40.05	-0.05
Selenium	7/99-4/00	39	0-0.9	0.2						* *				
Silver		39												
	7/99-4/00	39	0-0.9	0.35										
Sodium						1.5					7/99-5/00	80	35-757	193
Zinc	7/99-4/00	39	15-333	133.6		7/99-5/00	32	<0.05	<0.05		7/99-5/00	80	<0.05	<0.05
O&G (%)	7/99-4/00	39	0.3-6.7	2.4	1.	7/99-5/00	32	<1-24	2.8		7/99-5/00	80	<1-3	<1
TOC (%)	7/99-4/00	39	0.3-8.2	2.9										
Site:	 Bossier Paris	h Lan	d Treatment	, .										 .
Location:	Bossier Paris													
Status:	active	,												
No. Cells:	10		1.								100			
Area:														
Area:	NA ·													
Medium		1	Cell Sludge					Sump Water	4.7			G	roundwater	
	Dates	ń	Range (mg/kg)	Avg		Dates	n	Range (mg/L)	Avg		Dates	'n	Range (mg/L)	Avg
pH											8/99-4/00		6.73-7.89	7.13
Conductivity (μ)			and the second								8/99-4/00	20	1,000-1,700	1,310
TDS											8/99-4/00	20	644-1,300	8.93
Arsenic											8/99-4/00	20	<0.005	<0.005
Barium														
Lead											8/99-4/00	20	<0.05-0.84	<0.005
											8/99-4/00	20	<0.02-0.25	0.49
Sodium											8/99-4/00	20	71-128	0.03
Zinc			e de la companya de								8/99-4/00	20	<0.02-0.2	95.6
O&G											8/99-4/00	20	<5	0.07

Site:	Bourg Land	Troats	nont											
Location:	Lafourche Pa													
		ansn,	LA											
Status:	active													
No. Cells:	18		9.											
Area:	78.5 acres (3	3.42 m	illion ft²)		100									
Medium			Cell Sludge					Sump Water				G	roundwater	
	Dates	n,	Range (mg/kg)	Avg		Dates	n	Range (mg/L)	Avg		Dates	n	Range (mg/L)	Avg
pН	7/99-4/00	36	7.4-9.8	8.00		7/99-4/00	56	6.4-8.8	7.1		7/99-4/00	52	6.5-7.9	7
Conductivity (µ)						7/99-4/00	56	100-18,100	5241		7/99-4/00	52	800-780,000	18,894
TDS					: 1 ₂	7/99-4/00	56	23-7,840	2548		7/99-4/00	52	400-4,040	2.201
Arsenic	7/99-4/00	36	0.3-3.2	2.58					2010		7/99-4/00	39	<0.01	<0.01
Barium	7/99-4/00	36	39,643-122,763	82,646		7/99-4/00	56	0.4-12.4	2.5		7/99-4/00	51		
Bicarbonate	7/99-4/00	36	24.4-79.3	49.8		7700-4700	50	0.4-12.4	2.5		1199-4100	51	<0.05-3.6	1.4
Cadmium	7/99-4/00	36	0.2-1.00	0.458										
Calcium	7/99-4/00	36	280.6-4,128.3	1,213										
Carbonate	7/99-4/00	36												
Chloride			0-24.0	4.1										
	7/99-4/00	. 36	993-33,002	4,043.1		_1.2					7/99-4/00	52	32-2,663	1,274
Chromium	7/99-4/00	36	10-271	72.11		7/99-4/00	56	<0.05	<0.05		7/99-4/00	39	< 0.05	<0.05
Lead	7/99-4/00	36	9-236	65.3		7/99-4/00	56	<0.05	<0.05		7/99-4/00	39	< 0.05	< 0.05
Magnesium	7/99-4/00	36	97.25-206	126.5										
Mercury	7/99-4/00	36	0.1-9	0.32										
Selenium	7/99-4/00	36	0-0.3	0.15										
Silver	7/99-4/00	36	0.3-0.8	0.36										
Sodium	7/99-4/00	36	759-16,069	1,999.5							7/99-4/00	52	25-1,596	695
Sulfate	7/99-4/00	36	1,056.7-4,130.6	2,265										000
Zinc	7/99-4/00	36	12-357	128.1		7/99-4/00	56	<0.05	< 0.05		7/99-4/00	39	<0.05	<0.05
O&G (%)	7/99-4/00	36	0.1-7.2	2.45		7/99-4/00	56	<1-68	4.2		7/99-4/00	52	<1-1	<1
TOC (%)	7/99-4/00	36	0-9	3							1100-4100	, 52	71-1	-1
Site:	Elm Grove L	and Tr	reatment							 				
Site: Location:	Elm Grove La Bossier Paris		reatment											
			reatment											
Location:	Bossier Paris		reatment											
Location: Status:	Bossier Paris active	sh, LA									.:'			
Location: Status: No. Cells: Area:	Bossier Paris active 10	sh, LA	ion ft ²)								-1			
Location: Status: No. Cells:	Bossier Paris active 10	sh, LA						Sump Water			·: '	Gi	roundwater	
Location: Status: No. Cells: Area: Medium	Bossier Paris active 10	sh, LA 35 milli n	ion ft ²)	Avg		Dates	n.	Sump Water Range (mg/L)	Avg		Dates	Gi n		Ava
Location: Status: No. Cells: Area: Medium	Bossier Paris active 10 31 acres (1.3	sh, LA 35 milli	ion ft²) Cell Sludge	Avg 8.04	i v	Dates	n.	•	Avg		Dates 4/00		roundwater Range (mg/L) 7.40-7.89	Avg 7.7
Location: Status: No. Cells: Area: Medium	Bossier Paris active 10 31 acres (1.3	sh, LA 35 milli n	ion ft ²) Cell Sludge Range (mg/kg)			Dates	n.	•	Avg		4/00	n 5	Range (mg/L) 7.40-7.89	7.7
Location: Status: No. Cells: Area: Medium	Bossier Paris active 10 31 acres (1.3 Dates 4/00	sh, LA 35 milli n 5	ion ft²) Cell Sludge Range (mg/kg) 7.71-8.85	8.04		Dates	n.	•	Avg		4/00 4/00	n 5 5	Range (mg/L) 7.40-7.89 1,200-1,700	7.7 1,360
Location: Status: No. Cells: Area: Medium pH Conductivity (µ)	Bossier Paris active 10 31 acres (1.3 Dates 4/00	sh, LA 35 milli n 5	ion ft²) Cell Sludge Range (mg/kg) 7.71-8.85	8.04 16,244		Dates	n.	•	Avg		4/00	n 5	Range (mg/L) 7.40-7.89	7.7
Location: Status: No. Cells: Area: Medium PH Conductivity (µ) TDS Arsenic	Bossier Paris active 10 31 acres (1.3 Dates 4/00 4/00	sh, LA 35 milli n 5 5	ion ft ²) Cell Sludge Range (mg/kg) 7.71-8.85 12,100-81,200 2.8-3.0	8.04 16,244 2.9		Dates	n.	•	Avg		4/00 4/00 4/00	n 5 5 5	Range (mg/L) 7.40-7.89 1,200-1,700 800-1,300	7.7 1,360 1,038
Location: Status: No. Cells: Area: Medium PH Conductivity (µ) TDS Arsenic Barium	Bossier Paris active 10 31 acres (1.3 Dates 4/00 4/00 4/00	sh, LA 35 milli n 5 5 5	Cell Sludge Range (mg/kg) 7.71-8.85 12,100-81,200 2.8-3.0 61,000-122,345	8.04 16,244 2.9 89,451	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Dates	n.	•	Avg		4/00 4/00	n 5 5	Range (mg/L) 7.40-7.89 1,200-1,700	7.7 1,360
Location: Status: No. Cells: Area: Medium PH Conductivity (µ) TDS Arsenic Barium Bicarbonate	Bossier Paris active 10 31 acres (1.3 Dates 4/00 4/00 4/00 4/00 4/00 4/00	sh, LA 35 milli n 5 5 5 5	Cell Sludge Range (mg/kg) 7.71-8.85 12,100-81,200 2.8-3.0 61,000-122,345 0.38-0.70	8.04 16,244 2.9 89,451 0.57		Dates	n.	•	Avg		4/00 4/00 4/00	n 5 5 5	Range (mg/L) 7.40-7.89 1,200-1,700 800-1,300	7.7 1,360 1,038
Location: Status: No. Cells: Area: Medium PH Conductivity (µ) TDS Arsenic Barlum Bicarbonate Cadmium	Bossier Paris active 10 31 acres (1.3 Dates 4/00 4/00 4/00 4/00 4/00 4/00 4/00 4/0	sh, LA 85 milli n 5 5 5 5 5	con ft ²) Cell Sludge Range (mg/kg) 7.71-8.85 12,100-81,200 2.8-3.0 61,000-122,345 0.38-0.70 0.31-0.42	8.04 16,244 2.9 89,451 0.57 0.36		Dates	n.	•	Avg		4/00 4/00 4/00	n 5 5 5	Range (mg/L) 7.40-7.89 1,200-1,700 800-1,300	7.7 1,360 1,038
Location: Status: No. Cells: Area: Medium PH Conductivity (µ) TDS Arsenic Barium Bicarbonate Cadmium Calcium	Bossier Paris active 10 31 acres (1.3 Dates 4/00 4/00 4/00 4/00 4/00 4/00 4/00 4/0	sh, LA 85 milli n 5 5 5 5 5 5	Cell Sludge Range (mg/kg) 7.71-8.85 12,100-81,200 2.8-3.0 61,000-122,345 0.38-0.70 0.31-0.42 34,4-112.7	8.04 16,244 2.9 89,451 0.57 0.36 69.3) V	Dates	n.	•	Avg		4/00 4/00 4/00	n 5 5 5	Range (mg/L) 7.40-7.89 1,200-1,700 800-1,300	7.7 1,360 1,038
Location: Status: No. Cells: Area: Medium PH Conductivity (µ) TDS Arsenic Barium Bicarbonate Cadmium Calcium Carbonate	Bossier Paris active 10 31 acres (1.3 Dates 4/00 4/00 4/00 4/00 4/00 4/00 4/00 4/0	sh, LA 85 milli n 5 5 5 5 5 5 5	Cell Sludge Range (mg/kg) 7.71-8.85 12,100-81,200 2.8-3.0 61,000-122,345 0.38-0.70 0.31-0.42 34,4-112,7 0.0.22	8.04 16,244 2.9 89,451 0.57 0.36 69.3 0.06		Dates	n.	•	Avg		4/00 4/00 4/00 4/00	n 5 5 5	Range (mg/L) 7.40-7.89 1,200-1,700 800-1,300 0.05-0.82	7.7 1,360 1,038 0.37
Location: Status: No. Cells: Area: Medium PH Conductivity (µ) TDS Arsenic Barium Bicarbonate Cadmium Calcium Carbonate Chloride	Bossier Paris active 10 10 31 acres (1.3 Dates 4/00 4/00 4/00 4/00 4/00 4/00 4/00 4/0	sh, LA 85 milli n 5 5 5 5 5 5 5 5 5 5 5 5 5	con ft ²) Cell Sludge Range (mg/kg) 7.71-8.85 12,100-81,200 2.8-3.0 61,000-122,345 0.38-0.70 0.31-0.42 34.4-112.7 0.0.22 63-190	8.04 16,244 2.9 89,451 0.57 0.36 69.3 0.06 123.0		Dates	n.	•	Avg		4/00 4/00 4/00 4/00	n 5 5 5 5	Range (mg/L) 7.40-7.89 1,200-1,700 800-1,300 0.05-0.82	7.7 1,360 1,038 0.37
Location: Status: No. Cells: Area: Medium PH Conductivity (µ) TDS Arsenic Barium Bicarbonate Cadmium Calcium Carbonate Chloride Chromium	Bossier Paris active 10 31 acres (1.3 Dates 4/00 4/00 4/00 4/00 4/00 4/00 4/00 4/0	sh, LA 85 milli n 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	cell Sludge Range (mg/kg) 7.71-8.85 12,100-81,200 2.8-3.0 61,000-122,345 0.38-0.70 0.31-0.42 34.4-112.7 0.0.22 63-190 60.2-182.1	8.04 16,244 2.9 89,451 0.57 0.36 69.3 0.06 123.0 105.6		Dates	n.	•	Avg		4/00 4/00 4/00 4/00 4/00 4/00	n 5 5 5 5 5 5	Range (mg/L) 7.40-7.89 1,200-1,700 800-1,300 0.05-0.82	7.7 1,360 1,038 0.37
Location: Status: No. Cells: Area: Medium PH Conductivity (µ) TDS Arsenic Barium Bicarbonate Cadmium Calcium Carbonate Chloride Chromium Lead	Bossier Paris active 10 31 acres (1.3 Dates 4/00 4/00 4/00 4/00 4/00 4/00 4/00 4/0	sh, LA 85 milli n 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Cell Sludge Range (mg/kg) 7.71-8.85 12,100-81,200 2.8-3.0 61,000-122,345 0.38-0.70 0.31-0.42 34.4-112.7 0.0.22 63-190 60.2-182.1 46.6-120.7	8.04 16,244 2.9 89,451 0.57 0.36 69.3 0.06 123.0 105.6 81.2		Dates	n	•	Avg		4/00 4/00 4/00 4/00	n 5 5 5 5	Range (mg/L) 7.40-7.89 1,200-1,700 800-1,300 0.05-0.82	7.7 1,360 1,038 0.37
Location: Status: No. Cells: Area: Medium PH Conductivity (µ) TDS Arsenic Barium Bicarbonate Cadmium Calcium Carbonate Chloride Chromium Lead Magnesium	Bossier Paris active 10 31 acres (1.3 Dates 4/00 4/00 4/00 4/00 4/00 4/00 4/00 4/0	sh, LA 85 milli n 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Cell Sludge Range (mg/kg) 7.71-8.85 12,100-81,200 2.8-3.0 61,000-122,345 0.38-0.70 0.31-0.42 34.4-112.7 0.0.22 63-190 60.2-182.1 46.6-120.7 9.3-12.0	8.04 16,244 2.9 89,451 0.57 0.36 69.3 0.06 123.0 105.6 81.2 10.4		Dates	n.	•	Avg		4/00 4/00 4/00 4/00 4/00 4/00	n 5 5 5 5 5 5	Range (mg/L) 7.40-7.89 1,200-1,700 800-1,300 0.05-0.82	7.7 1,360 1,038 0.37
Location: Status: No. Cells: Area: Medium PH Conductivity (µ) TDS Arsenic Barium Bicarbonate Cadmium Calcium Carbonate Chloride Chromium Lead Magnesium Mercury	Bossier Paris active 10 31 acres (1.3 Dates 4/00 4/00 4/00 4/00 4/00 4/00 4/00 4/0	sh, LA	Cell Sludge Range (mg/kg) 7.71-8.85 12,100-81,200 2.8-3.0 61,000-122,345 0.38-0.70 0.31-0.42 34.4-112.7 0.0.22 63-190 60.2-182.1 46.6-120.7 9.3-12.0 0.263-0.866	8.04 16,244 2.9 89,451 0.57 0.36 69.3 0.06 123.0 105.6 81.2 10.4 0.435		Dates	n.	•	Avg		4/00 4/00 4/00 4/00 4/00 4/00	n 5 5 5 5 5 5	Range (mg/L) 7.40-7.89 1,200-1,700 800-1,300 0.05-0.82	7.7 1,360 1,038 0.37
Location: Status: No. Cells: Area: Medium PH Conductivity (µ) TDS Arsenic Barium Bicarbonate Cadmium Calcium Carbonate Chloride Chromium Lead Magnesium Mercury Selenium	Bossier Paris active 10 31 acres (1.3 Dates 4/00 4/00 4/00 4/00 4/00 4/00 4/00 4/0	sh, LA	Cell Sludge Range (mg/kg) 7.71-8.85 12,100-81,200 2.8-3.0 61,000-122,345 0.38-0.70 0.31-0.42 34.4-112.7 0.0.22 63-190 60.2-182.1 46.6-120.7 9.3-12.0 0.263-0.866 0.10-0.18	8.04 16,244 2.9 89,451 0.57 0.36 69.3 0.06 123.0 105.6 81.2 10.4 0.435 0.13		Dates	n.	•	Avg		4/00 4/00 4/00 4/00 4/00 4/00	n 5 5 5 5 5 5	Range (mg/L) 7.40-7.89 1,200-1,700 800-1,300 0.05-0.82	7.7 1,360 1,038 0.37
Location: Status: No. Cells: Area: Medium PH Conductivity (µ) TDS Arsenic Barium Bicarbonate Cadmium Calcium Carbonate Chloride Chloride Chromium Lead Magnesium Mercury Selenium Silver	Bossier Paris active 10 31 acres (1.3 Dates 4/00 4/00	sh, LA	Cell Sludge Range (mg/kg) 7.71-8.85 12,100-81,200 2.8-3.0 61,000-122,345 0.38-0.70 0.31-0.42 34.4-112.7 0.0.22 63-190 60.2-182.1 46.6-120.7 9.3-12.0 0.263-0.866	8.04 16,244 2.9 89,451 0.57 0.36 69.3 0.06 123.0 105.6 81.2 10.4 0.435		Dates	n.	•	Avg		4/00 4/00 4/00 4/00 4/00 4/00	n 5 5 5 5 5 5	Range (mg/L) 7.40-7.89 1,200-1,700 800-1,300 0.05-0.82	7.7 1,360 1,038 0.37
Location: Status: No. Cells: Area: Medium PH Conductivity (µ) TDS Arsenic Barium Bicarbonate Cadmium Calcium Carbonate Chlonde Chromium Lead Magnesium Mercury Selenium	Bossier Paris active 10 31 acres (1.3 Dates 4/00 4/00 4/00 4/00 4/00 4/00 4/00 4/0	sh, LA	Cell Sludge Range (mg/kg) 7.71-8.85 12,100-81,200 2.8-3.0 61,000-122,345 0.38-0.70 0.31-0.42 34.4-112.7 0.0.22 63-190 60.2-182.1 46.6-120.7 9.3-12.0 0.263-0.866 0.10-0.18	8.04 16,244 2.9 89,451 0.57 0.36 69.3 0.06 123.0 105.6 81.2 10.4 0.435 0.13		Dates	n .	•	Avg		4/00 4/00 4/00 4/00 4/00 4/00	n 5 5 5 5 5 5 5	Range (mg/L) 7.40-7.89 1,200-1,700 800-1,300 0.05-0.82 100-325 0-0.03 0-0.03	7.7 1,360 1,038 0.37 200 0.006 0.014
Location: Status: No. Cells: Area: Medium PH Conductivity (µ) TDS Arsenic Barium Bicarbonate Cadmium Calcium Carbonate Chloride Chloride Chromium Lead Magnesium Mercury Selenium Silver	Bossier Paris active 10 31 acres (1.3 Dates 4/00 4/00	sh, LA	Cell Sludge Range (mg/kg) 7.71-8.85 12,100-81,200 2.8-3.0 61,000-122,345 0.38-0.70 0.31-0.42 34.4-112.7 0.0.22 63-190 60.2-182.1 46.6-120.7 9.3-12.0 0.263-0.866 0.11-0.18 0.28-0.39	8.04 16,244 2.9 89,451 0.57 0.36 69.3 0.06 123.0 105.6 81.2 10.4 0.435 0.13		Dates	n.	•	Avg		4/00 4/00 4/00 4/00 4/00 4/00 4/00 4/00	n 5 5 5 5 5 5	Range (mg/L) 7.40-7.89 1,200-1,700 800-1,300 0.05-0.82	7.7 1,360 1,038 0.37
Location: Status: No. Cells: Area: Medium PH Conductivity (µ) TDS Arsenic Barium Bicarbonate Cadmium Calcium Carbonate Chloride Chromium Lead Magnesium Mercury Selenium Silver Sodium	Bossier Paris active 10 31 acres (1.3 Dates 4/00 4/00 4/00 4/00 4/00 4/00 4/00 4/0	sh, LA 155	Cell Sludge Range (mg/kg) 7.71-8.85 12,100-81,200 2.8-3.0 61,000-122,345 0.38-0.70 0.31-0.42 34.4-112.7 0.0.22 63-190 60.2-182.1 46.6-120.7 9.3-12.0 0.263-0.866 0.11-0.18 0.28-0.39 55-167	8.04 16,244 2.9 89,451 0.57 0.36 69,3 0.06 123.0 105.6 81.2 10.4 0.435 0.13 0.31 99.7		Dates	n .	•	Avg		4/00 4/00 4/00 4/00 4/00 4/00 4/00 4/00	n 5 5 5 5 5 5 5 5 5	Range (mg/L) 7.40-7.89 1,200-1,700 800-1,300 0.05-0.82 100-325 0-0.03 0-0.03	7.7 1,360 1,038 0.37 200 0.006 0.014
Location: Status: No. Cells: Area: Medium PH Conductivity (µ) TDS Arsenic Barium Bicarbonate Cadmium Calcium Calcium Carbonate Chloride Chromium Lead Magnesium Mercury Selenium Silver Sodium Sulfate	Bossier Paris active 10 31 acres (1.3 Dates 4/00 4/00 4/00 4/00 4/00 4/00 4/00 4/0	sh, LA 55 n 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Cell Sludge Range (mg/kg) 7.71-8.85 12,100-81,200 2.8-3.0 61,000-122,345 0.38-0.70 0.31-0.42 34.4-112.7 0.0.22 63-190 60.2-182.1 46.6-120.7 9.3-12.0 0.263-0.866 0.11-0.18 0.28-0.39 55-167 41.7-67	8.04 16,244 2.9 89,451 0.57 0.36 69.3 0.06 123.0 105.6 81.2 10.4 0.435 0.13 0.31		Dates	n .	•	Avg		4/00 4/00 4/00 4/00 4/00 4/00 4/00 4/00	n 5 5 5 5 5 5 5	Range (mg/L) 7.40-7.89 1,200-1,700 800-1,300 0.05-0.82 100-325 0-0.03 0-0.03	7.7 1,360 1,038 0.37 200 0.006 0.014

	• •											
Site:	Lacassine Land Treatment											
Location:	Jeff Davis Parish, LA											
Status:	inactive											
No. Cells:	11											
Area:	136.6 acres (5.95 million ft ²)											
, ii oui	· · · · · · · · · · · · · · · · · · ·					1.0						
Medium	Cell Sludge				Sump Water					0	roundwater	
Medium												
	Dates n Range (mg/kg) Avg	Dates	n	Range (mg/L)	Avg			Dates	n	Range (mg/L)	Avg
pН			7/97-7/98	36	5.78-7.58	6.81			7/97-7/98	36	6.67-7.2	6.82
Conductivity (µ)									7/97-7/98	36	404-2,144	1,198
TDS			7/97-7/98	36	384-3,348	1,77	0		7/97-7/98	36	700-3,300	1703
Arsenic									7/97-7/98	27	<0.005	<0.005
Barium			7/97-7/98	36	<0.5-1.2	0.6			7/97-7/98	36	<0.5-0.8	<0.5
Chloride			7/97-7/98	36	0-1,330	566			7/97-7/98	36	310-950	338
			1131-1130	30	. 0-1,330	500						
Chromium									7/97-7/98	27	<0.02	<0.02
Lead			7/97-7/98	36	<0.01-0.07	0.02			7/97-7/98	36	<0.01-0.03	0.01
Sodium			7/97-7/98	36	86-739	355			7/97-7/98	36	78-401	183
Zinc			7/97-7/98	36	<0.02-0.6	0.08	i		7/97-7/98	36	<0.02-0.29	0.08
O&G (%)			7/97-7/98	36	<5	<5			7/97-7/98	36	<5	<5
Ra226 (pCi/l)									7/97-7/98	36	0-1.47	0.16
Ra228 (pCi/l)									7/97-7/98	36	0-1.47	0.10
	•											
Pb210 (pCi/l)									7/97-7/98	36	023	0.07
Site:	Lafourche Construction (land treatm	ent)										
Location:	Lafourche Parish, LA											
Status:	inactive											
No. Pits/Cells:	3/2											
Area:	30.1 acres (1.31 million ft ²)											
Alca.	Contractor (not immorthly											
					Cuma Matas							
Medium	Cell Sludge				Sump Water				- 1 - <u>1</u>		roundwater	
Medium) Avg	Dates	· · n	Sump Water Range (mg/L)	Avg			Dates	n	Range (mg/L)	Avg
Medium pH	Cell Sludge) Avg	Dates	n		Avg			12/93			Avg 7.1
Medium	Cell Sludge) Avg	Dates	n		Avg				n	Range (mg/L)	
Medium pH	Cell Sludge) Avg	Dates	n		Avg	·		12/93	n 14	Range (mg/L) 6.7-7.5	7.1
Medium pH Conductivity (μ)	Cell Sludge) Avg	Dates	n		Avg			12/93 12/93 12/93	n 14 14 14	Range (mg/L) 6.7-7.5 510-3,020 410-2,274	7.1 1,920 1,474
Medium pH Conductivity (μ) TDS Arsenic	Cell Sludge) Avg	Dates	n		Avg			12/93 12/93 12/93 12/93	n 14 14 14 14	Range (mg/L) 6.7-7.5 510-3,020 410-2,274 nd	7.1 1,920 1,474 nd
Medium pH Conductivity (μ) TDS Arsenic Barium	Cell Sludge) Avg	Dates	n		Avg			12/93 12/93 12/93 12/93 12/93	n 14 14 14 14	Range (mg/L) 6.7-7.5 510-3,020 410-2,274 nd 0.9-5.1	7.1 1,920 1,474 nd 2.4
Medium pH Conductivity (μ) TDS Arsenic Barium Chloride	Cell Sludge) Avg	Dates	n		Avg	· .		12/93 12/93 12/93 12/93 12/93 12/93	n 14 14 14 14 14	Range (mg/L) 6.7-7.5 510-3,020 410-2,274 nd 0.9-5.1 42-696	7.1 1,920 1,474 nd 2.4 354
Medium pH Conductivity (μ) TDS Arsenic Barium Chloride Chromium	Cell Sludge) Avg	Dates	n		Avg			12/93 12/93 12/93 12/93 12/93 12/93 12/93	n 14 14 14 14 14 14	Range (mg/L) 6.7-7.5 510-3,020 410-2,274 nd 0.9-5.1 42-696 nd	7.1 1,920 1,474 nd 2.4 354 nd
Medium pH Conductivity (μ) TDS Arsenic Barium Chloride Chromium Lead	Cell Sludge) Avg	Dates	n		Avg			12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93	n 14 14 14 14 14 14 14	Range (mg/L) 6.7-7.5 510-3.020 410-2,274 nd 0.9-5.1 42-696 nd	7.1 1,920 1,474 nd 2.4 354 nd
Medium pH Conductivity (μ) TDS Arsenic Barlum Chloride Chromium Lead Sodium	Cell Sludge) Avg	Dates	n		Avg			12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93	n 14 14 14 14 14 14 14 14	Range (mg/L) 6.7-7.5 510-3,020 410-2,274 nd 0.9-5.1 42-696 nd nd 27.5-379.3	7.1 1,920 1,474 nd 2.4 354 nd nd
Medium pH Conductivity (μ) TDS Arsenic Barium Chloride Chromium Lead	Cell Sludge) Avg	Dates	n		Avg			12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93	n 14 14 14 14 14 14 14	Range (mg/L) 6.7-7.5 510-3.020 410-2,274 nd 0.9-5.1 42-696 nd	7.1 1,920 1,474 nd 2.4 354 nd
Medium pH Conductivity (μ) TDS Arsenic Barlum Chloride Chromium Lead Sodium	Cell Sludge) Avg	Dates	n		Avg			12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93	n 14 14 14 14 14 14 14 14	Range (mg/L) 6.7-7.5 510-3,020 410-2,274 nd 0.9-5.1 42-696 nd nd 27.5-379.3	7.1 1,920 1,474 nd 2.4 354 nd nd
Medium pH Conductivity (μ) TDS Arsenic Barlum Chloride Chromium Lead Sodium	Cell Sludge) Avg	Dates	n		Avg			12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93	n 14 14 14 14 14 14 14 14	Range (mg/L) 6.7-7.5 510-3,020 410-2,274 nd 0.9-5.1 42-696 nd nd 27.5-379.3 nd-2.32	7.1 1,920 1,474 nd 2.4 354 nd nd 179 0.29
Medium pH Conductivity (µ) TDS Arsenic Barium Chloride Chromium Lead Sodium Zinc O&G (%)	Cell Sludge Dates n Range (mg/kg) Avg	Dates	n		Avg			12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93	n 14 14 14 14 14 14 14 14	Range (mg/L) 6.7-7.5 510-3,020 410-2,274 nd 0.9-5.1 42-696 nd nd 27.5-379.3 nd-2.32	7.1 1,920 1,474 nd 2.4 354 nd nd 179 0.29
Medium pH Conductivity (μ) TDS Arsenic Barlum Chloride Chromium Lead Sodium Zinc O&G (%) Site:	Cell Sludge Dates n Range (mg/kg MAR Services (land treatment)) Avg	Dates	n		Avg			12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93	n 14 14 14 14 14 14 14 14	Range (mg/L) 6.7-7.5 510-3,020 410-2,274 nd 0.9-5.1 42-696 nd nd 27.5-379.3 nd-2.32	7.1 1,920 1,474 nd 2.4 354 nd nd 179 0.29
Medium pH Conductivity (µ) TDS Arsenic Barium Chloride Chromium Lead Sodium Zinc O&G (%) Site: Location:	Cell Sludge Dates n Range (mg/kg MAR Services (land treatment) St. Landry Parish, LA) Avg	Dates	n		Avg			12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93	n 14 14 14 14 14 14 14 14	Range (mg/L) 6.7-7.5 510-3,020 410-2,274 nd 0.9-5.1 42-696 nd nd 27.5-379.3 nd-2.32	7.1 1,920 1,474 nd 2.4 354 nd nd 179 0.29
Medium pH Conductivity (µ) TDS Arsenic Barium Chloride Chromium Lead Sodium Zinc O&G (%) Site: Location: Status:	Cell Sludge Dates n Range (mg/kg MAR Services (land treatment) St. Landry Parish, LA abandoned) Avg	Dates	n n		Avg		· ·	12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93	n 14 14 14 14 14 14 14 14	Range (mg/L) 6.7-7.5 510-3,020 410-2,274 nd 0.9-5.1 42-696 nd nd 27.5-379.3 nd-2.32	7.1 1,920 1,474 nd 2.4 354 nd nd 179 0.29
Medium pH Conductivity (µ) TDS Arsenic Barium Chloride Chromium Lead Sodium Zinc O&G (%) Site: Location: Status: No. Cells:	Cell Sludge Dates n Range (mg/kg MAR Services (land treatment) St. Landry Parish, LA abandoned 6) Avg	Dates	n		Avg			12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93	n 14 14 14 14 14 14 14 14	Range (mg/L) 6.7-7.5 510-3,020 410-2,274 nd 0.9-5.1 42-696 nd nd 27.5-379.3 nd-2.32	7.1 1,920 1,474 nd 2.4 354 nd nd 179 0.29
Medium pH Conductivity (µ) TDS Arsenic Barium Chloride Chromium Lead Sodium Zinc O&G (%) Site: Location: Status:	Cell Sludge Dates n Range (mg/kg MAR Services (land treatment) St. Landry Parish, LA abandoned) Avg	Dates	n		Avg			12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93	n 14 14 14 14 14 14 14 14	Range (mg/L) 6.7-7.5 510-3,020 410-2,274 nd 0.9-5.1 42-696 nd nd 27.5-379.3 nd-2.32	7.1 1,920 1,474 nd 2.4 354 nd nd 179 0.29
Medium pH Conductivity (µ) TDS Arsenic Barium Chloride Chromium Lead Sodium Zinc O&G (%) Site: Location: Status: No. Cells:	Cell Sludge Dates n Range (mg/kg MAR Services (land treatment) St. Landry Parish, LA abandoned 6) Avg	Dates	n		Avg			12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93	n 14 14 14 14 14 14 14 14	Range (mg/L) 6.7-7.5 510-3,020 410-2,274 nd 0.9-5.1 42-696 nd nd 27.5-379.3 nd-2.32	7.1 1,920 1,474 nd 2.4 354 nd nd 179 0.29
Medium pH Conductivity (µ) TDS Arsenic Barium Chloride Chromium Lead Sodium Zinc O&G (%) Site: Location: Status: No. Cells:	Cell Sludge Dates n Range (mg/kg MAR Services (land treatment) St. Landry Parish, LA abandoned 6) Avg	Dates	n		Avg			12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93	n 14 14 14 14 14 14 14 14 14	Range (mg/L) 6.7-7.5 510-3,020 410-2,274 nd 0.9-5.1 42-696 nd nd 27.5-379.3 nd-2.32 <1-1	7.1 1,920 1,474 nd 2.4 354 nd nd 179 0.29
Medium pH Conductivity (µ) TDS Arsenic Barlum Chloride Chromium Lead Sodium Zinc O&G (%) Site: Location: Status: No. Cells: Area:	Cell Sludge Dates n Range (mg/kg MAR Services (land treatment) St. Landry Parish, LA abandoned 6 30.1 acres (1.31 million ft²) Cell Sludge		Dates		Range (mg/L) Sump Water				12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93	n 14 14 14 14 14 14 14 14 14	Range (mg/L) 6.7-7.5 510-3.020 410-2,274 nd 0.9-5.1 42-696 nd nd 27.5-379.3 nd-2.32 <1-1	7.1 1,920 1,474 nd 2.4 354 nd nd 179 0.29 <1
Medium pH Conductivity (µ) TDS Arsenic Barium Chloride Chromium Lead Sodium Zinc O&G (%) Site: Location: Status: No. Cells: Area:	Cell Sludge Dates n Range (mg/kg MAR Services (land treatment) St. Landry Parish, LA abandoned 6 30.1 acres (1.31 million ft²)			n	Range (mg/L)	Avg			12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93	n 14 14 14 14 14 14 14 14 14 14	Range (mg/L) 6.7-7.5 510-3.020 410-2,274 nd 0.9-5.1 42-696 nd nd 27.5-379.3 nd-2.32 <1-1	7.1 1,920 1,474 nd 2.4 354 nd nd 179 0.29 <1
Medium pH Conductivity (µ) TDS Arsenic Barlum Chloride Chromium Lead Sodium Zinc O&G (%) Site: Location: Status: No. Cells: Area: Medium pH	Cell Sludge Dates n Range (mg/kg MAR Services (land treatment) St. Landry Parish, LA abandoned 6 30.1 acres (1.31 million ft²) Cell Sludge				Range (mg/L) Sump Water				12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93	n 14 14 14 14 14 14 14 14 14 14 14 25 1	Range (mg/L) 6.7-7.5 510-3.020 410-2.274 nd 0.9-5.1 42-696 nd nd 27.5-379.3 nd-2.32 <1-1	7.1 1,920 1,474 nd 2.4 354 nd nd 179 0.29 <1
Medium pH Conductivity (µ) TDS Arsenic Barlum Chloride Chromium Lead Sodium Zinc O&G (%) Site: Location: Status: No. Cells: Area: Medium pH TDS	Cell Sludge Dates n Range (mg/kg MAR Services (land treatment) St. Landry Parish, LA abandoned 6 30.1 acres (1.31 million ft²) Cell Sludge				Range (mg/L) Sump Water				12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93	n 14 14 14 14 14 14 14 14 14 14 12 14 14 12 14 14 14 14 14 14 14 14 14 14 14 14 14	Range (mg/L) 6.7-7.5 510-3,020 410-2,274 nd 0.9-5.1 42-696 nd nd 27.5-379.3 nd-2.32 <1-1	7.1 1,920 1,474 nd 2.4 354 nd 179 0.29 <1
Medium pH Conductivity (µ) TDS Arsenic Barium Chloride Chromium Lead Sodium Zinc O&G (%) Site: Location: Status: No. Cells: Area: Medium pH TDS CI	Cell Sludge Dates n Range (mg/kg MAR Services (land treatment) St. Landry Parish, LA abandoned 6 30.1 acres (1.31 million ft²) Cell Sludge				Range (mg/L) Sump Water				12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93	n 14 14 14 14 14 14 14 14 15 14 15 15 12 15 12 15 15 15 15 15 15 15 15 15 15 15 15 15	Range (mg/L) 6.7-7.5 510-3.020 410-2.274 nd 0.9-5.1 42-696 nd nd 27.5-379.3 nd-2.32 <1-1	7.1 1,920 1,474 nd 2.4 354 nd 179 0.29 <1 Avg 7.41 13,009 7,318
Medium pH Conductivity (µ) TDS Arsenic Barium Chloride Chromium Lead Sodium Zinc O&G (%) Site: Location: Status: No. Cells: Area: Medium pH TDS CI O&G (mg/L)	Cell Sludge Dates n Range (mg/kg MAR Services (land treatment) St. Landry Parish, LA abandoned 6 30.1 acres (1.31 million ft²) Cell Sludge				Range (mg/L) Sump Water				12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93	n 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	Range (mg/L) 6.7-7.5 510-3.020 410-2.274 nd 0.9-5.1 42-696 nd nd 27.5-379.3 nd-2.32 <1-1	7.1 1,920 1,474 nd 2.4 354 nd nd 179 0.29 <1
Medium pH Conductivity (µ) TDS Arsenic Barium Chloride Chromium Lead Sodium Zinc O&G (%) Site: Location: Status: No. Cells: Area: Medium pH TDS CI	Cell Sludge Dates n Range (mg/kg MAR Services (land treatment) St. Landry Parish, LA abandoned 6 30.1 acres (1.31 million ft²) Cell Sludge				Range (mg/L) Sump Water				12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93 12/93	n 14 14 14 14 14 14 14 14 15 14 15 15 12 15 12 15 15 15 15 15 15 15 15 15 15 15 15 15	Range (mg/L) 6.7-7.5 510-3.020 410-2.274 nd 0.9-5.1 42-696 nd nd 27.5-379.3 nd-2.32 <1-1	7.1 1,920 1,474 nd 2.4 354 nd 179 0.29 <1 Avg 7.41 13,009 7,318

Site: Location:													
	Mermentau L												
	Jeff Davis Pa	insn, L	А										
Status:	active												
No. Cells:	25												
Area:	107.9 acres ((4.7 mi	llion ft ²)										
Medium			Cell Sludge					Sump Water			Gr	roundwater	
inoulum	Dates	n	Range (mg/kg)	Avg		Dates	n	Range (mg/L)	Avg	Dates	n .	Range (mg/L)	Avg
-11						Dates	"	range (mg/L)	Avg				
pH	7/99-4/00	70	7.1-9.2	8.00						7/99-4/00	80	5.57-8.44	7.14
Conductivity (µ)	7/99-4/00	70	9,400-78,500	21,644						7/99-4/00	80	200-70,200	6,749
TDS										7/99-4/00	80	296-61,829	4,821
Arsenic	7/99-4/00	70	0.3-4.2	2.89						7/99-4/00	80	< 0.03	< 0.03
Barium	7/99-4/00	70	41,423-213,883	105,975						7/99-4/00	80	0.2-5.8	1.29
Bicarbonate	7/99-4/00	70	6.1-225.7	47.9								0.2 0.0	
	7/99-4/00	70		0.5									
Cadmium			0.3-0.9										
Calcium	7/99-4/00	70	220.4-8,563.1	1614.8			100						
Carbonate	7/99-4/00	70	0-96	7.59									
Chloride	7/99-4/00	70	1134-37,504	5,496.0						7/99-4/00	80	20-29,991	2,389
Chromium	7/99-4/00	70	16-331	105.4						7/99-4/00	80	<0.02-0.08	0.041
Lead	7/99-4/00	70	19-304	113.0						7/99-4/00	80	<0.02-0.41	0.05
and the second second										1133-4100	60	~0.02-0.41	0.03
Magnesium	7/99-4/00	70	77.8-899.6	175.7									
Mercury	7/99-4/00	70	0.1-2.3	0.54									
Selenium	7/99-4/00	70	0.1-3.7	0.3									
Silver	7/99-4/00	70	0.2-0.9	0.43									
Sodium	7/99-4/00	70	621-16,101	2459.5						7/99-4/00	80	18-38,119	1,856
										1133-4100	00	10-30,113	1,030
Sulfate	7/99-4/00	70	1580-7498	2874									
Zinc	7/99-4/00	.70	45-393	157.7						7/99-4/00	80	<0.02-1.14	0.26
O&G (%)	7/99-4/00	70	0.1-8.9	3.0						7/99-4/00	80	<5-5	<5
TOC (%)	7/99-4/00	70	0.1-12.2	3.1									
· · · ·				+1									
Site:	Mostorn Poli	iable L	and Treatment							 			
												* 4	
Location:	Pointe Coup	ee Pan	isn, LA										
Status:	inactive												
No. Cells:	4												
Area:	25.3 acres (1	i.1, milli	ion ft ²)										
Medium			Cell Sludge					Sump Water			٥.	roundwater	
Wedium	D-4			A		D-4	_			.			
	Dates	n	Range (mg/kg)	Avg		Dates	n	Range (mg/L)	Avg	Dates	n	Range (mg/L)	Avg
pН						3/99	4	6.8-7.0	6.90	3/99	11	6.9-7.2	7.10
Conductivity (µ)						3/99	4	2130-2640	2,235	3/99	11	677-2350	1,191
TDS						3/99	4	1160-17400	5,390	3/99	11	434-1300	689
Arsenic						3/99	4	<0.01	<0.01	3/99	11	<0.01-0.019	0.01
Barium						3/99	4						
								0.23-0.411	0	3/99	11	0.18-0.551	0
Chloride						3/99	4	292-372	326.0	3/99	11	10.6-399	120
Chromium						3/99	4	<0.01	<0.01	3/99	11	<0.01	<0.01
1						3/99	4	< 0.0003	< 0.0003	3/99	11	<0.003	< 0.003
Lead													
										3/00			
Sodium						3/99	4	109-250	164	3/99	11	34-87.9	51
Sodium Zinc						3/99 3/99	4	109-250 <0.02	164 <0.02	3/99	11 11	0-0.14	0.01
Sodium						3/99	4	109-250	164		11		
Sodium Zinc O&G						3/99 3/99	4	109-250 <0.02	164 <0.02	3/99	11 11	0-0.14	0.01
Sodium Zinc	Basin					3/99 3/99	4	109-250 <0.02	164 <0.02	 3/99	11 11	0-0.14	0.01
Sodium Zinc O&G		NM			· · ·	3/99 3/99	4	109-250 <0.02	164 <0.02	 3/99	11 11	0-0.14	0.01
Sodium Zinc O&G Site: Location:	San Juan Co	., NM			· '	3/99 3/99	4	109-250 <0.02	164 <0.02	3/99	11 11	0-0.14	0.01
Sodium Zinc O&G Site: Location: Status:	San Juan Co active	., NM				3/99 3/99	4	109-250 <0.02	164 <0.02	3/99	11 11	0-0.14	0.01
Sodium Zinc O&G Site: Location: Status: No. Pits:	San Juan Co active 2) a 2			3/99 3/99	4	109-250 <0.02	164 <0.02	3/99	11 11	0-0.14	0.01
Sodium Zinc O&G Site: Location: Status: No. Pits:	San Juan Co active) ft²)			3/99 3/99	4	109-250 <0.02	164 <0.02	3/99	11 11	0-0.14	0.01
Sodium Zinc O&G Site: Location: Status: No. Pits:	San Juan Co active 2) ft²)			3/99 3/99	4	109-250 <0.02	164 <0.02	3/99	11 11	0-0.14	0.01
Sodium Zinc O&G Site: Location: Status: No. Pits: Area:	San Juan Co active 2					3/99 3/99	4	109-250 <0.02 <5	164 <0.02	3/99	11 11 9	0-0.14 <5-8	0.01
Sodium Zinc O&G Site: Location:	San Juan Co active 2 6.17 acres (2	268,800	Pit Sludge	Δ		3/99 3/99 3/99	4 4	109-250 <0.02 <5	164 <0.02 <5	 3/99 3/99	11 11 9	0-0.14 <5-8	0.01 5.50
Sodium Zinc O&G Site: Location: Status: No. Pits: Area: Medium	San Juan Co active 2			Avg		3/99 3/99 3/99 Dates	4 4 4	109-250 <0.02 <5 Pit Water Range (mg/L)	164 <0.02 <5	3/99	11 11 9	0-0.14 <5-8	0.01
Sodium Zinc O&G Site: Location: Status: No. Pits: Area: Medium pH	San Juan Co active 2 6.17 acres (2	268,800	Pit Sludge	Avg		3/99 3/99 3/99 3/99 Dates 2/86-9/92	4 4 4 1 18	109-250 <0.02 <5 Pit Water Range (mg/L) 7.2-9.2	164 <0.02 <5	3/99 3/99	11 11 9	0-0.14 <5-8	0.01 5.50
Sodium Zinc O&G Site: Location: Status: No. Pits: Area: Medium	San Juan Co active 2 6.17 acres (2	268,800	Pit Sludge	Avg		3/99 3/99 3/99 Dates	4 4 4	109-250 <0.02 <5 Pit Water Range (mg/L)	164 <0.02 <5	3/99 3/99	11 11 9	0-0.14 <5-8	0.01 5.50
Sodium Zinc O&G Site: Location: Status: No. Pits: Area: Medium pH	San Juan Co active 2 6.17 acres (2	268,800	Pit Sludge	Avg		3/99 3/99 3/99 3/99 Dates 2/86-9/92	4 4 4 1 18	109-250 <0.02 <5 Pit Water Range (mg/L) 7.2-9.2	164 <0.02 <5 Avg 8.5 18,939	3/99 3/99	11 11 9	0-0.14 <5-8	0.01 5.50
Sodium Zinc O&G Site: Location: Status: No. Pits: Area: Medium pH TDS Arsenic	San Juan Co active 2 6.17 acres (2	268,800	Pit Sludge	Avg		3/99 3/99 3/99 3/99 Dates 2/86-9/92 2/86-9/92	n 18 9 4	109-250 <0.02 <5 Pit Water Range (mg/L) 7.2-9.2 9,615-38,000 0.008-0.062	164 <0.02 <5 Avg 8.5 18,939 0.0155	 3/99 3/99	11 11 9	0-0.14 <5-8	0.01 5.50
Sodium Zinc O&G Site: Location: Status: No. Pits: Area: Medium PH TDS Arsenic Barium	San Juan Co active 2 6.17 acres (2	268,800	Pit Sludge	Avg		3/99 3/99 3/99 3/99 Dates 2/86-9/92 2/86-9/92 2/86-9/92	18 9 4 6	109-250 <0.02 <5 Pit Water Range (mg/L) 7.2-9.2 9,615-38,000 0.008-0.062 <0.1-2.1	164 <0.02 <5 Avg 8.5 18,939 0.0155 0.62	3/99 3/99	11 11 9	0-0.14 <5-8	0.01 5.50
Sodium Zinc O&G Site: Location: Status: No. Pits: Area: Medium PH TDS Arsenic Barium Cadmium	San Juan Co active 2 6.17 acres (2	268,800	Pit Sludge	Avg		3/99 3/99 3/99 Dates 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92	n 18 9 4 6 5	109-250 <0.02 <5 Pit Water Range (mg/L) 7.2-9.2 9,615-38,000 0.008-0.062 <0.1-2.1 <0.1	Avg 8.5 18,939 0.0155 0.62 <0.1	3/99 3/99	11 11 9	0-0.14 <5-8	0.01 5.50
Sodium Zinc O&G Site: Location: Status: No. Pits: Area: Medium pH TDS Arsenic Barium Cadmium Chloride	San Juan Co active 2 6.17 acres (2	268,800	Pit Sludge	Avg		3/99 3/99 3/99 3/99 Dates 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92	18 9 4 6 5	109-250 <0.02 <5 Pit Water Range (mg/L) 7.2-9.2 9.615-38,000 0.008-0.062 <0.1-2.1 <0.1 3,026-20,600	Avg 8.5 18,939 0.0155 0.62 <0.1 7998.5	3/99 3/99	11 11 9	0-0.14 <5-8	0.01 5.50
Sodium Zinc O&G Site: Location: Status: No. Pits: Area: Medium PH TDS Arsenic Barium Cadmium	San Juan Co active 2 6.17 acres (2	268,800	Pit Sludge	Avg		3/99 3/99 3/99 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92	n 18 9 4 6 5	Pit Water Range (mg/L) 7.2-9.2 9,615-38,000 0.008-0.062 <0.1-2.1 <0.1 3,026-20,600 <0.1	Avg 8.5 18,939 0.0155 0.62 <0.1 7998.5 <0.1	3/99 3/99	11 11 9	0-0.14 <5-8	0.01 5.50
Sodium Zinc O&G Site: Location: Status: No. Pits: Area: Medium pH TDS Arsenic Barium Cadmium Chloride	San Juan Co active 2 6.17 acres (2	268,800	Pit Sludge	Avg		3/99 3/99 3/99 3/99 Dates 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92	18 9 4 6 5	109-250 <0.02 <5 Pit Water Range (mg/L) 7.2-9.2 9.615-38,000 0.008-0.062 <0.1-2.1 <0.1 3,026-20,600	Avg 8.5 18,939 0.0155 0.62 <0.1 7998.5 <0.1	3/99 3/99	11 11 9	0-0.14 <5-8	0.01 5.50
Sodium Zinc O&G Site: Location: Status: No. Pits: Area: Medium PH TDS Arsenic Barium Cadmium Chloride Chromium Lead	San Juan Co active 2 6.17 acres (2	268,800	Pit Sludge	Avg		3/99 3/99 3/99 3/99 Dates 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92	18 9 4 6 5 10 6	Pit Water Range (mg/L) 7.2-9.2 9.615-38,000 0.008-0.062 <0.1-2.1 <0.1 3.026-20,600 <0.1	Avg 8.5 18,939 0.0155 0.62 <0.1 7988.5 <0.1 <0.1	3/99 3/99	11 11 9	0-0.14 <5-8	0.01 5.50
Sodium Zinc O&G Site: Location: Status: No. Pits: Area: Medium pH TDS Arsenic Barium Cadmium Chloride Chromium Lead Mercury	San Juan Co active 2 6.17 acres (2	268,800	Pit Sludge	Avg		3/99 3/99 3/99 3/99 Dates 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92	n 18 9 4 6 5 10 6 6 2	Pit Water Range (mg/L) 7.2-9.2 9,615-38,000 0.008-0.062 <0.1-2.1 3,026-20,600 <0.1 <0.1 <0.0005	Avg 8.5 18,939 0.0155 0.62 <0.1 7998.5 <0.1 <0.0005	3/99 3/99	11 11 9	0-0.14 <5-8	0.01 5.50
Sodium Zinc O&G Site: Location: Status: No. Pits: Area: Medium pH TDS Arsenic Barium Cadmium Chloride Chromium Lead Mercury Selenium	San Juan Co active 2 6.17 acres (2	268,800	Pit Sludge	Avg		3/99 3/99 3/99 3/99 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92 9/92 9/92	n 18 9 4 6 5 10 6 6 2 4	Pit Water Range (mg/L) 7.2-9.2 9,615-38,000 0.008-0.062 <0.1-2.1 <0.1 3,026-20,600 <0.1 <0.1 <0.0005 <0.005<0.005	Avg 8.5 18,939 0.0155 0.62 <0.1 7998.5 <0.1 <0.01 <0.0005	3/99 3/99	11 11 9	0-0.14 <5-8	0.01 5.50
Sodium Zinc O&G Site: Location: Status: No. Pits: Area: Medium PH TDS Arsenic Barium Cadmium Cadmium Chloride Chromium Lead Mercury Selenium Silver	San Juan Co active 2 6.17 acres (2	268,800	Pit Sludge	Avg		3/99 3/99 3/99 3/99 Dates 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92 9/92 9/92 2/86-9/92	n 18 9 4 6 5 10 6 6 6 2 4 6	Pit Water Range (mg/L) 7.2-9.2 9,615-38,000 0.008-0.062 <0.1-2.1 <0.1 3,026-20,600 <0.1 <0.01 <0.005 <0.005 <0.005	Avg 8.5 18,939 0.0155 0.62 <0.1 7998.5 <0.01 <0.0005 <0.005	3/99 3/99	11 11 9	0-0.14 <5-8	0.01 5.50
Sodium Zinc O&G Site: Location: Status: No. Pits: Area: Medium PH TDS Arsenic Barium Cadmium Cadmium Chloride Chromium Lead Mercury Selenium Silver	San Juan Co active 2 6.17 acres (2	268,800	Pit Sludge	Avg		3/99 3/99 3/99 3/99 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92 9/92 9/92	n 18 9 4 6 5 10 6 6 2 4	Pit Water Range (mg/L) 7.2-9.2 9,615-38,000 0.008-0.062 <0.1-2.1 <0.1 3,026-20,600 <0.1 <0.1 <0.0005 <0.005<0.005	Avg 8.5 18,939 0.0155 0.62 <0.1 7998.5 <0.1 <0.0005 <0.005 <0.05	3/99 3/99	11 11 9	0-0.14 <5-8	0.01 5.50
Sodium Zinc Zinc O&G Site: Location: Status: No. Pits: Area: Medium pH TDS Arsenic Barium Chloride Chromium Lead Mercury Selenium Silver Zinc	San Juan Co active 2 6.17 acres (2	268,800	Pit Sludge	Avg		3/99 3/99 3/99 3/99 Dates 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92 9/92 9/92 2/86-9/92	n 18 9 4 6 5 10 6 6 2 4 6 6	Pit Water Range (mg/L) 7.2-9.2 9,615-38,000 0.008-0.062 <0.1-2.1 <0.1 3,026-20,600 <0.1 <0.0005 <0.005-<0.005 <0.1 <0.1	Avg 8.5 18,939 0.0155 0.62 <0.1 7998.5 <0.1 <0.0005 <0.005 <0.05	3/99 3/99	11 11 9	0-0.14 <5-8	0.01 5.50
Sodium Zinc O&G Site: Location: Status: No. Pits: Area: Medium pH TDS Arsenic Barium Cadmium Chloride Chromium Lead Mercury Selenium Silver Zinc TPH	San Juan Co active 2 6.17 acres (2 Dates	n	Pit Sludge Range (mg/kg)			3/99 3/99 3/99 3/99 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92	n 18 9 4 6 5 10 6 6 2 4 6 6 13	Pit Water Range (mg/L) 7.2-9.2 9.615-38,000 0.008-0.062 <0.1-2.1 <0.1 3,026-20,600 <0.1 <0.1 <0.0005 <0.005-<0.025 <0.1 700-26,700	Avg 8.5 18,939 0.0155 0.62 <0.1 <0.01 <0.005 <0.05 <0.1 7619	3/99 3/99	11 11 9	0-0.14 <5-8	0.01 5.50
Sodium Zinc O&G Site: Location: Status: No. Pits: Area: Medium pH TDS Arsenic Barium Cadmium Chloride Chromium Lead Mercury Selenium Silver Zinc TPH Benzene	San Juan Co active 2 6.17 acres (2 Dates	n 18	Pit Sludge Range (mg/kg)	<0.05		3/99 3/99 3/99 Dates 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92	n 18 9 4 6 5 10 6 6 2 4 6 6 6 13 10	Pit Water Range (mg/L) 7.2-9.2 9,615-38,000 0.008-0.062 <0.1-2.1 <0.1 3,026-20,600 <0.1 <0.1 <0.005 <0.005-0.025 <0.1 <0.1 700-26,700 0.036-0.59	Avg 8.5 18,939 0.0155 0.62 <0.1 <0.1 <0.05 <0.005 <0.005 0.005 0.4274	3/99 3/99	11 11 9	0-0.14 <5-8	0.01 5.50
Sodium Zinc O&G Site: Location: Status: No. Pits: Area: Medium PH TDS Arsenic Barium Cadmium Chloride Chromium Lead Mercury Selenium Silver Zinc TPH Benzene Ethylbenzene	San Juan Co active 2 6.17 acres (2 Dates	n 18 18 18 18	Pit Sludge Range (mg/kg) -0.05 -0.05	<0.05 <0.05		3/99 3/99 3/99 3/99 Dates 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92	n 18 9 4 6 5 10 6 6 6 13 10 8	Pit Water Range (mg/L) 7.2-9.2 9,615-38,000 0.008-0.062 <0.1-2.1 <0.1 3,026-20,600 <0.1 <0.0005 <0.005-<0.005 <0.01 <0.1 700-26,700 0.036-0.59 ND-0.34	Avg 8.5 18,939 0.0155 0.62 <0.1 <0.0005 <0.01 <0.1 <0.10 0.01 0.4274 0.086	3/99 3/99	11 11 9	0-0.14 <5-8	0.01 5.50
Sodium Zinc O&G Site: Location: Status: No. Pits: Area: Medium PH TDS Arsenic Barium Cadmium Chloride Chromium Lead Mercury Selenium Silver Zinc TPH Benzene	San Juan Co active 2 6.17 acres (2 Dates	n 18	Pit Sludge Range (mg/kg)	<0.05		3/99 3/99 3/99 Dates 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92 2/86-9/92	n 18 9 4 6 5 10 6 6 2 4 6 6 6 13 10	Pit Water Range (mg/L) 7.2-9.2 9,615-38,000 0.008-0.062 <0.1-2.1 <0.1 3,026-20,600 <0.1 <0.1 <0.005 <0.005-0.025 <0.1 <0.1 700-26,700 0.036-0.59	Avg 8.5 18,939 0.0155 0.62 <0.1 <0.1 <0.05 <0.005 <0.005 0.005 0.4274	3/99 3/99	11 11 9	0-0.14 <5-8	0.01 5.50

Site:	CRI Halfway												
Location:	Lea Co., NM												
Status:	active												
No. Pits:	2									1. 1			
Area:	259.9 acres (11.3 r	million ft ²)										
, u ou.	(,										
Medium			Pit Sludge				Pit Water						
Wediaiii	Datas	_		۸	 Datas	_		A				roundwater	_
TDS	Dates	n	Range (mg/kg)	Avg	Dates	n	Range (mg/L)	Avg		Dates	n	Range (mg/L)	Avg
										2/90	2	1,190-1,925	1,576
Conductivity	7/00			40.5	0/00			-4	4.00	2/90	5	1,700->50,000	>30,890
Arsenic	7/00	4	<5-66	19.5	6/00	. 1	<1	<1					
Barium	7/00		<5-410	163.3	6/00	1	1.7	1.7					
Cadmium	7/00	4	<2-2.7	1.43	6/00	1	<0.2	<0.2					
Chloride	_1_									2/90	5	568-136,675	54,247
Chromium	7/00	4	<5-70	21.5	6/00	. 1	<0.5	<0.5					
Lead	7/00	4	8.9-155	59.7	6/00	1	<1	<1					
Mercury	7/00	4	<0.19-3.37	0.84	6/00	1	0.00057	0.00057					
Selenium	7/00	4	<5	<5	6/00	1	<1	<1					
Silver	7/00	4	<2	<2	6/00	1	<0.5	<0.5					
Benzene	7/00	4	<0.02-0.44	0.36									
Toluene	7/00	4	0.14-30	8.14								•	
Ethylbenzene	7/00	4	<0.02-0.62	0.61			1						
Xylene	7/00	4	<0.02-1.74	0.66									
Site:	Laguna Quati	ro				,							
Location:	Eddy Co., NN												
Status:	inactive	•											
No. Pits:	4												
Area:	2.5 acres (10	8.900	ft ²)									•	
71104.	2.0 00100 (10	0,000	,										
Medium			Pit Sludge				Pit Water				G	roundwater	
	Dates	n	Range (mg/kg)	Avg	Dates	n	Range (mg/L)	Avg		Dates	n	Range (mg/L)	Avg
pН										24,00	•	range (mg/L)	Avg
TDS					10/91	2	170,616-200,00C	185308					
Arsenic	8/91	9	1.47-5.52	3.3	10/91	. 2	<0.500-2.4	1.4					
Barium		-			10/91	2	0.6-6.5	3.55					
Cadmium					10/91	2	<0.05	<0.05					
Chromium	8/91	9	5.2-52.4	32.02	10/91	2	<0.05	<0.05					
Lead	8/91	9	13.6-508	145.4	10/91	2	<0.5	<0.5					
Mercury	0/51	,	15.0-500	170.7	10/91	2	<0.0005-0.006	0.0032				7	
Selenium	8/91	9	0.53-1.87	1.01	10/91	. 2	<0.0005-0.006	0.0032					
Silver	8/91	. 9	0.07-0.3	0.24	10/01		-4.0						
	0/91	9	0.07-0.3	0.24	10/91	2	<1.0	<1.0					
Zinc TPH	44/05		2.040	0.040	10/91	2	<1.0	<1.0					
	11/95	1	3,246	3,246	40.00	_							
Benzene	8/91	6	<1	<1	10/91	2	0.38-0.52	0.45					
Toluene	. 8/91	6	<1-5	1.38	10/91	2	0.58-0.75	0.665					
Ethylbenzene	8/91	6	<1-9	4.7	10/91	2	<0.05-<0.1	<0.1					
Xviene	8/91	6	<1-31	8.53	10/91	2	0.39-0.5	0.445					

Location: Lea Co., NM	Σ										
active 8 50.3 acre	s (219 m	active 8 50.3 acres (219 million ft²)			. •						
Dates	c	. –	Avg	Dates	Pit Water n Range (mg/L)	ter ng/L)	Avg		Dates	Groundwater n Range (mg/L)	
1/99 1/99	7 7 7	2.7-16.3 239-2,570 <0.04-0.25	8.07 951 0.11		•				1/99 1/99 1/99	5 0.0238-0.222 5 0.454-3.6 5 <0.0006-0.0031	0.14032 1.8988 0.0016
1/99	~ ~	6.3-34	17.06						1/99	32 75-157,260 5 0.0217-0.0637 5 0.0047.0.0037	
	•	<0.05-1.7	0.89						1/99	5 <0.0389-0.175	<0.0001
							• •		1/99	o.	0.00268
Toluene Ethylbenzene Xylene									1/99 1/99 1/99	5 0.007-1.4 5 0.12-0.29 5 0.14-0.59	0.5574 0.194 0.0816
C& C Landfarm	ndfarm										
active 9		÷		•							
217.6 acr	es (9.48	217.6 acres (9.48 million ft²)									
č		Cell Sludge	S. A.	500	Sump Water	/ater	Š		5	Groundwater	
5/93 5/93		0.003	0.003	Dales	II) valige (II	(By/B	S.		Cales	n Kange (mg/kg)	BAY .
5/93		<0.005	<0.005								
5/93 5/93		56	50.58								
5/93		<0.05	0.05 0.1								
5/93	. 4 4	44	44 6								
5/93		0.003	0.003								
5/93 5/93	~ ~	<0.01 55	55 55								
86/9	5 5		29.8								
Toluene 5/99			<0.002								
5/99	5 5	<0.002	<0.002								
Tierra Cr	ouch Me	Tierra Crouch Mesa Land Treatment									
active	00.18	CO., 1414									
14 72.1 acre	s (3.14 r	14 72.1 acres (3.14 million ft²)						•			
Ċ	,	Cell Sludge	į		Sump Water	/ater				Groundwater	
Dates 6/98	- 2	Kange (mg/kg)	S S	Dates	n Kange (n	ng/L)	Avg		Dates	n Kange (mg/L)	Avg
86/9	4 4	8.1-37.3 ND	39.8								
86/9	4:			. *							
86/9 86/9	4 4	1.88-3.79	2.66								
86/9	4 4	6.37-12.1	8.56		-						
86/9		ΩN	ND								
86/9 86/9	4 4	QX	R								
86/9	2 2	g Z	N N								
86/9		ND-1.2	0.45								
86/9 86/9			0.048								
Toluene 5/98 Ethylbenzene 6/98	18	3 ND-0.056	0.008								
86/9	18	3 ND-0.452	0.065								

			7					4			
Site:	TNT Land Treati	ment							y		
Location:	Rio Arriba Co., N							11.			
Status:	active			*							
No. Cells:	6										
Area:	NA										
				100					•		
Medium		Cell Sludge					Sludge Water			Groundwater	
	Dates	Range (mg/kg)	Avg		Dates	n	Range (mg/L)	Avg	Dates	n Range (mg/L)	Avg
рH					7/88-2/99	6	7.7-8.9	8.19	8/91	4	
TDS				,	7/88-2/99	7	19,172-101,000	40,669	8/91	10	8434.5
Conductivity									 8/91	4	19554.75
Arsenic					7/88-2/99	5	ND-0.13	0.098	8/91	1 ND	ND
Barium					7/88-2/99	6	0.6-1.7	0.98	8/91	4	0.2375
Bicarbonate									8/91	10	468
Cadmium					7/88-2/99	6	ND-<0.01	<0.01	8/91	3 ND-<0.1	<0.1
Chloride					7/88-2/99	7	9,050-54,000	19945.71429	8/91	10	3305.92
Chromium					7/88-2/99	6	ND-0.04	<0.1	8/91	4 ND-<0.1	<0.1
Lead					7/88-2/99	6	<0.1	<0.1	8/91	3 ND-<0.1	<0.1
Mercury					7/88-2/99	4	<0.01	<0.01		1.00	
Selenium					7/88-2/99	4	<0.1	<0.1	. 8/91	1 nd .	nd
Silver					7/88-2/99	6	ND-<0.1	<0.1	8/91	4 ND-<0.1	
Zinc					7/88-2/99	3	<0.1	<0.1	8/91	4	0.205
Benzene					7/88-2/99	. 3	0.072-0.222	0.152666667	8/91	3 nd	nd
Toluene					7/88-2/99	3	0.082-0.45	0.302333333	8/91	3 nd	, nd
Ethylbenzene Xylene					7/88-2/99 7/88-2/99	3 3	ND-0.028 0.09-0.209	0.009	8/91	3 nd	nd
Aylerie					1100-2199	. 3	0.09-0.209	0.156	8/91	3 nd	nd
Site:	 A & A Tank Truc	ks							 	· · · · · · · · · · · · · · · · · · ·	
Location:	McClain Co., OK										
Status:	inactive									4.1	
No. Pits:	2										
Area:	NA										
Bbls. Rec'd	1991-93	36,480		100							
Site:	Arrow 3-5-15										
Location:	Pittsburg Co., O	K									
Status:	inactive										
No. Pits:	2		100								
Area:	>0.7 acres (>30,	000ft²)									
		Pit Sludge			<u>.</u>		Pit Water			Groundwater	
	Dates i	Pit Sludge n Range (mg/kg)	Avg		Dates	n	Range (mg/L)	Avg	Dates	Groundwater n Range (mg/L)	Avg
рН		n Range (mg/kg)			3/92	3	Range (mg/L) 7-8	7.6	Dates		Avg
TDS	5/89	n Range (mg/kg) I 1849	1849				Range (mg/L)		Dates		Avg
TDS Arsenic	5/89 3/92	Range (mg/kg) 1 1849 1 0.02	1849 0.02		3/92	3	Range (mg/L) 7-8	7.6	Dates		Avg
TDS Arsenic Barium	5/89	Range (mg/kg) 1 1849 1 0.02	1849		3/92 3/92	5	Range (mg/L) 7-8 442-22,819	7.6 7401	Dates		Avg
TDS Arsenic Barium Bicarbonate	5/89 3/92	Range (mg/kg) 1 1849 1 0.02	1849 0.02		3/92 3/92 3/92	5	Range (mg/L) 7-8 442-22,819 36-402	7.6 7401 130	Dates		Avg
TDS Arsenic Barium Bicarbonate Boron	5/89 3/92 3/92	n Range (mg/kg) 1 1849 1 0.02 1 0.6	1849 0.02 0.6		3/92 3/92	5	Range (mg/L) 7-8 442-22,819	7.6 7401	Dates		Avg
TDS Arsenic Barium Bicarbonate Boron Cadmium	5/89 3/92 3/92	Range (mg/kg) 1 1849 1 0.02 1 0.6	1849 0.02 0.6		3/92 3/92 3/92 3/92	3 5 5 2	Range (mg/L) 7-8 442-22,819 36-402 0.03-0.1	7.6 7401 130	Dates		Avg
TDS Arsenic Barium Bicarbonate Boron Cadmium Calcium	5/89 3/92 3/92	Range (mg/kg) 1 1849 1 0.02 1 0.6	1849 0.02 0.6		3/92 3/92 3/92 3/92 3/92	3 5 5 2	Range (mg/L) 7-8 442-22,819 36-402 0.03-0.1 29-1,223	7.6 7401 130 0.07	Dates		Avg
TDS Arsenic Barium Bicarbonate Boron Cadmium	5/89 3/92 3/92	Range (mg/kg) 1 1849 1 0.02 1 0.6	1849 0.02 0.6		3/92 3/92 3/92 3/92 3/92 3/92	3 5 2 5 3	Range (mg/L) 7-8 442-22,819 36-402 0.03-0.1 29-1,223	7.6 7401 130 0.07	Dates		Avg
TDS Arsenic Barium Bicarbonate Boron Cadmium Calcium Carbonate Chloride	5/89 3/92 3/92 3/92 5/89	Range (mg/kg) 1 1849 0.02 0.6 4 <0.005 69	1849 0.02 0.6 <0.005 69		3/92 3/92 3/92 3/92 3/92	3 5 5 2	Range (mg/L) 7-8 442-22,819 36-402 0.03-0.1 29-1,223	7.6 7401 130 0.07	Dates		Avg
TDS Arsenic Barium Bicarbonate Boron Cadmium Calcium Carbonate	5/89 3/92 3/92 3/92 5/89	Range (mg/kg) 1849 0.02 0.6 <	1849 0.02 0.6 <0.005 69		3/92 3/92 3/92 3/92 3/92 3/92	3 5 2 5 3	Range (mg/L) 7-8 442-22,819 36-402 0.03-0.1 29-1,223	7.6 7401 130 0.07	Dates		Avg
TDS Arsenic Banium Bicarbonate Boron Cadmium Calcium Carbonate Chloride Chromium	5/89 3/92 3/92 3/92 5/89	Range (mg/kg) 1849 0.02 0.6 4 40.005 69	1849 0.02 0.6 <0.005 69		3/92 3/92 3/92 3/92 3/92 3/92	3 5 2 5 3	Range (mg/L) 7-8 442-22,819 36-402 0.03-0.1 29-1,223	7.6 7401 130 0.07	Dates		Avg
TDS Arsenic Barium Bicarbonate Boron Cadmium Calcium Carbonate Chloride Chromium Lead	5/89 3/92 3/92 3/92 5/89	Range (mg/kg) 1849 0.02 0.6 40.005 69 0.22 0.032	1849 0.02 0.6 <0.005 69		3/92 3/92 3/92 3/92 3/92 3/92 3/92	3 5 2 5 3 5	Range (mg/L) 7-8 442-22,819 36-402 0.03-0.1 29-1,223 0 168-11,820	7.6 7401 130 0.07 0 3,766	Dates		Avg
TDS Arsenic Barium Bicarbonate Boron Cadmium Calcium Carbonate Chloride Chromium Lead Magnesium Mercury Nitrogen	5/89 3/92 3/92 3/92 5/89 3/92 3/92	Range (mg/kg) 1849 0.02 0.6 <0.005 69 0.22 0.032 <0.002	1849 0.02 0.6 <0.005 69 0.22 0.032		3/92 3/92 3/92 3/92 3/92 3/92 3/92	3 5 2 5 3 5	Range (mg/L) 7-8 442-22,819 36-402 0.03-0.1 29-1,223 0 168-11,820	7.6 7401 130 0.07 0 3,766	Dates		Avg
TDS Arsenic Barium Bicarbonate Boron Cadmium Calcium Carbonate Chloride Chromium Lead Magnesium Mercury Nitrogen Selenium	5/89 3/92 3/92 3/92 5/89 3/92 3/92 3/92	Range (mg/kg) 1849 0.02 0.6 <	1849 0.02 0.6 <0.005 69 0.22 0.032 <0.002		3/92 3/92 3/92 3/92 3/92 3/92 3/92	3 5 5 2 5 3 5 5	Range (mg/L) 7-8 442-22,819 36-402 0.03-0.1 29-1,223 0 168-11,820	7.6 7401 130 0.07 0 3,766	Dates		Avg
TDS Arsenic Barium Bicarbonate Boron Cadmium Calcium Carbonate Chloride Chromium Lead Magnesium Mercury Nitrogen Selenium Silver	5/89 3/92 3/92 3/92 5/89 3/92 3/92 3/92 3/92	Range (mg/kg) 1 1849 0.02 0.6 <0.005 69 0.22 0.032 <0.002 0.004 <0.004	1849 0.02 0.6 <0.005 69 0.22 0.032 <0.002		3/92 3/92 3/92 3/92 3/92 3/92 3/92 3/92	3 5 5 2 5 3 5 5 2	Range (mg/L) 7-8 442-22,819 36-402 0.03-0.1 29-1,223 0 168-11,820 6-646	7.6 7401 130 0.07 0 3,766 199	Dates		Avg
TDS Arsenic Barium Bicarbonate Boron Cadmium Calcium Carbonate Chloride Chromium Lead Magnesium Mercury Nitrogen Selenium Silver Sodium	5/89 3/92 3/92 3/92 5/89 3/92 3/92 3/92 3/92	Range (mg/kg) 1849 0.02 0.6 <	1849 0.02 0.6 <0.005 69 0.22 0.032 <0.002		3/92 3/92 3/92 3/92 3/92 3/92 3/92 3/92	3 5 5 2 5 3 5 5 2	Range (mg/L) 7-8 442-22,819 36-402 0.03-0.1 29-1,223 0 168-11,820 6-646 0-40	7.6 7401 130 0.07 0 3,766 199 20	Dates		Avg
TDS Arsenic Barium Bicarbonate Boron Cadmium Calcium Carbonate Chloride Chromium Lead Magnesium Mercury Nitrogen Selenium Silver	5/89 3/92 3/92 3/92 5/89 3/92 3/92 3/92 3/92	Range (mg/kg) 1 1849 0.02 0.6 <0.005 69 0.22 0.032 <0.002 0.004 <0.004	1849 0.02 0.6 <0.005 69 0.22 0.032 <0.002		3/92 3/92 3/92 3/92 3/92 3/92 3/92 3/92	3 5 5 2 5 3 5 5 2	Range (mg/L) 7-8 442-22,819 36-402 0.03-0.1 29-1,223 0 168-11,820 6-646	7.6 7401 130 0.07 0 3,766 199	Dates		Avg
TDS Arsenic Barium Bicarbonate Boron Cadmium Calcium Carbonate Chloride Chromium Lead Magnesium Mercury Nitrogen Selenium Silver Sodium Sulfate	5/89 3/92 3/92 5/89 3/92 3/92 3/92 3/92 3/92 5/89	Range (mg/kg) 1 1849 0.02 0.6 <0.005 69 0.22 0.032 <0.002 0.004 <0.004	1849 0.02 0.6 <0.005 69 0.22 0.032 <0.002 0.004 <0.01 565		3/92 3/92 3/92 3/92 3/92 3/92 3/92 3/92	3 5 5 2 5 3 5 5 2	Range (mg/L) 7-8 442-22,819 36-402 0.03-0.1 29-1,223 0 168-11,820 6-646 0-40	7.6 7401 130 0.07 0 3,766 199 20	Dates		Avg
TDS Arsenic Barium Bicarbonate Boron Cadmium Calcium Carbonate Chloride Chromium Lead Magnesium Mercury Nitrogen Selenium Silver Sodium Sulfate	5/89 3/92 3/92 5/89 3/92 3/92 3/92 3/92 3/92 3/92 Arrow/Calumet	Range (mg/kg) 1849 0.02 0.6 <0.005 69 0.22 0.032 <0.002 0.004 <0.01 565	1849 0.02 0.6 <0.005 69 0.22 0.032 <0.002 0.004 <0.01 565		3/92 3/92 3/92 3/92 3/92 3/92 3/92 3/92	3 5 5 2 5 3 5 5 2	Range (mg/L) 7-8 442-22,819 36-402 0.03-0.1 29-1,223 0 168-11,820 6-646 0-40	7.6 7401 130 0.07 0 3,766 199 20	Dates		Avg
TDS Arsenic Barium Bicarbonate Boron Cadmium Calcium Carbonate Chloride Chromium Lead Magnesium Mercury Nitrogen Selenium Silver Sodium Sulfate	5/89 3/92 3/92 3/92 5/89 3/92 3/92 3/92 3/92 5/89 Arrow/Calumet Canadian Co	Range (mg/kg) 1849 0.02 0.6 <0.005 69 0.22 0.032 <0.002 0.004 <0.01 565	1849 0.02 0.6 <0.005 69 0.22 0.032 <0.002 0.004 <0.01 565		3/92 3/92 3/92 3/92 3/92 3/92 3/92 3/92	3 5 5 2 5 3 5 5 2 5	Range (mg/L) 7-8 442-22,819 36-402 0.03-0.1 29-1,223 0 168-11,820 6-646 0-40	7.6 7401 130 0.07 0 3,766 199 20	Dates		Avg
TDS Arsenic Barium Bicarbonate Boron Cadmium Calcium Carbonate Chloride Chromium Lead Magnesium Mercury Nitrogen Selenium Silver Sodium Sulfate Site: Location: Status:	5/89 3/92 3/92 3/92 5/89 3/92 3/92 3/92 3/92 3/92 5/89 Arrow/Calumet Canadian Co., Cinactive	Range (mg/kg) 1849 0.02 0.6 <0.005 69 0.22 0.032 <0.002 0.004 <0.01 565	1849 0.02 0.6 <0.005 69 0.22 0.032 <0.002 0.004 <0.01 565		3/92 3/92 3/92 3/92 3/92 3/92 3/92 3/92	3 5 5 2 5 3 5 5 2 5	Range (mg/L) 7-8 442-22,819 36-402 0.03-0.1 29-1,223 0 168-11,820 6-646 0-40	7.6 7401 130 0.07 0 3,766 199 20	Dates		Avg
TDS Arsenic Barium Bicarbonate Boron Cadmium Calcium Carbonate Chloride Chromium Lead Magnesium Mercury Nitrogen Selenium Silver Sodium Sulfate Location: Status: No. Pits:	5/89 3/92 3/92 5/89 3/92 3/92 3/92 3/92 3/92 3/92 5/89 Arrow/Calumet Canadian Co., Cinactive 7	Range (mg/kg) 1849 0.02 0.6 40.005 69 0.22 0.032 40.002 10.004 40.01 565	1849 0.02 0.6 <0.005 69 0.22 0.032 <0.002 0.004 <0.01 565		3/92 3/92 3/92 3/92 3/92 3/92 3/92 3/92	3 5 5 2 5 3 5 5 2 5	Range (mg/L) 7-8 442-22,819 36-402 0.03-0.1 29-1,223 0 168-11,820 6-646 0-40	7.6 7401 130 0.07 0 3,766 199 20	Dates		Avg
TDS Arsenic Barium Bicarbonate Boron Cadmium Calcium Carbonate Chloride Chromium Lead Magnesium Mercury Nitrogen Selenium Silver Sodium Sulfate Site: Location: Status:	5/89 3/92 3/92 3/92 5/89 3/92 3/92 3/92 3/92 3/92 5/89 Arrow/Calumet Canadian Co., Cinactive	Range (mg/kg) 1849 0.02 0.6 40.005 69 0.22 0.032 40.002 10.004 40.01 565	1849 0.02 0.6 <0.005 69 0.22 0.032 <0.002 0.004 <0.01 565		3/92 3/92 3/92 3/92 3/92 3/92 3/92 3/92	3 5 5 2 5 3 5 5 2 5	Range (mg/L) 7-8 442-22,819 36-402 0.03-0.1 29-1,223 0 168-11,820 6-646 0-40	7.6 7401 130 0.07 0 3,766 199 20	Dates		Avg
TDS Arsenic Barium Bicarbonate Boron Cadmium Calcium Carbonate Chloride Chromium Lead Magnesium Mercury Nitrogen Selenium Silver Sodium Sulfate Location: Status: No. Pits:	5/89 3/92 3/92 5/89 3/92 3/92 3/92 3/92 3/92 3/92 5/89 Arrow/Calumet Canadian Co., Cinactive 7	Range (mg/kg) 1 1849 0.02 0.6 0.005 69 0.022 0.032 0.0002 0.0004 0.001 565	1849 0.02 0.6 <0.005 69 0.22 0.032 <0.002 0.004 <0.01 565		3/92 3/92 3/92 3/92 3/92 3/92 3/92 3/92	3 5 5 2 5 3 5 5 2 5	Range (mg/L) 7-8 442-22,819 36-402 0.03-0.1 29-1,223 0 168-11,820 6-646 0-40 86-5,107 8-90	7.6 7401 130 0.07 0 3,766 199 20	Dates	n Range (mg/L)	Avg
TDS Arsenic Barium Bicarbonate Boron Cadmium Calcium Carbonate Chloride Chromium Lead Magnesium Mercury Nitrogen Selenium Silver Sodium Sulfate Location: Status: No. Pits:	5/89 3/92 3/92 5/89 3/92 3/92 3/92 3/92 3/92 5/89 Arrow/Calumet Canadian Co. , Cinactive 7 2.6 acres (112,7)	Range (mg/kg) 1849 0.02 0.6 40.005 69 0.22 0.032 40.002 10.004 40.01 565	1849 0.02 0.6 <0.005 69 0.22 0.032 <0.002 0.004 <0.01 565		3/92 3/92 3/92 3/92 3/92 3/92 3/92 3/92	3 5 5 2 5 3 5 5 2 5 5 5 5 5 5 5 5 5 5 5	Range (mg/L) 7-8 442-22,819 36-402 0.03-0.1 29-1,223 0 168-11,820 6-646 0-40 86-5,107 8-90	7.6 7401 130 0.07 0 3,766 199 20 1,639 48		n Range (mg/L)	
TDS Arsenic Barium Bicarbonate Boron Cadmium Calcium Carbonate Chloride Chromium Lead Magnesium Mercury Nitrogen Selenium Silver Sodium Sulfate Location: Status: No. Pits:	5/89 3/92 3/92 5/89 3/92 3/92 3/92 3/92 3/92 3/92 5/89 Arrow/Calumet Canadian Co Cinactive 7 2.6 acres (112,7)	Range (mg/kg) 1 1849 0.02 0.6 < 0.005 69 0.22 0.032 < 0.002 < 0.002 0.004 < 0.01 565 DK Pit Sludge Range (mg/kg)	1849 0.02 0.6 <0.005 69 0.22 0.032 <0.002 0.004 <0.01 565		3/92 3/92 3/92 3/92 3/92 3/92 3/92 3/92	3 5 5 2 5 3 5 5 2 5	Range (mg/L) 7-8 442-22,819 36-402 0.03-0.1 29-1,223 0 168-11,820 6-646 0-40 86-5,107 8-90	7.6 7401 130 0.07 0 3,766 199 20	Dates 3/89-11/93	n Range (mg/L)	Avg
TDS Arsenic Barium Bicarbonate Boron Cadmium Calcium Carbonate Chloride Chromium Lead Magnesium Mercury Nitrogen Selenium Silver Sodium Sulfate Site: Location: Status: No. Pits: Area:	5/89 3/92 3/92 5/89 3/92 3/92 3/92 3/92 3/92 3/92 5/89 Arrow/Calumet Canadian Co., Cinactive 7 2.6 acres (112,7)	Range (mg/kg) 1 1849 1 0.02 1 0.6 1 <0.005 69 1 0.22 1 0.032 1 0.004 <0.01 565 Pit Sludge Range (mg/kg) 1 8.4	1849 0.02 0.6 <0.005 69 0.22 0.032 <0.002 0.004 <0.01 565		3/92 3/92 3/92 3/92 3/92 3/92 3/92 3/92	3 5 5 2 5 3 5 5 2 5 5 5	Range (mg/L) 7-8 442-22,819 36-402 0.03-0.1 29-1,223 0 168-11,820 6-646 0-40 86-5,107 8-90	7.6 7401 130 0.07 0 3,766 199 20 1,639 48	Dates	n Range (mg/L) Groundwater n Range (mg/L)	Avg
TDS Arsenic Barium Bicarbonate Boron Cadmium Calcium Carbonate Chioride Chromium Lead Magnesium Mercury Nitrogen Selenium Silver Sodium Sulfate Site: Location: Status: No. Pits: Area:	5/89 3/92 3/92 3/92 5/89 3/92 3/92 3/92 3/92 3/92 5/89 Arrow/Calumet Canadian Co., Cinactive 7 2.6 acres (112,7)	Range (mg/kg) 1849 0.02 0.6 <0.005 69 0.22 0.032 0.002 0.004 0.001 565 OK Pit Sludge Range (mg/kg) 1 8.4 429 1 190	1849 0.02 0.6 <0.005 69 0.22 0.032 <0.002 0.004 <0.01 565		3/92 3/92 3/92 3/92 3/92 3/92 3/92 3/92	3 5 5 2 5 3 5 5 2 5 5 5 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Range (mg/L) 7-8 442-22,819 36-402 0.03-0.1 29-1,223 0 168-11,820 6-646 0-40 86-5,107 8-90 Pit Water Range (mg/L) 7.3-9.3 277-14,520 84-661	7.6 7401 130 0.07 0 3,766 199 20 1,639 48	Dates 3/89-11/93	Groundwater Range (mg/L) Groundwater Range (mg/L) 7-8.4	Avg 7.5
TDS Arsenic Barium Bicarbonate Boron Cadmium Calcium Carbonate Chloride Chromium Lead Magnesium Mercury Nitrogen Selenium Silver Sodium Sulfate Site: Location: Status: No. Pits: Area:	5/89 3/92 3/92 3/92 5/89 3/92 3/92 3/92 3/92 3/92 5/89 Arrow/Calumet Canadian Co (inactive 7 2.6 acres (112,7) Dates 11/93 11/93 11/93 11/93 11/93	Range (mg/kg) 1 1849 0.02 0.6 0.005 69 0.022 0.002 0.002 0.004 0.001 565 OK Pit Sludge Range (mg/kg) 1 8.4 1 429 1 90 1 57	1849 0.02 0.6 <0.005 69 0.22 0.032 <0.002 0.004 <0.01 565		3/92 3/92 3/92 3/92 3/92 3/92 3/92 3/92	3 5 5 2 5 3 5 5 2 5 5 5 5 7 8 8 8 7 8	Range (mg/L) 7-8 442-22,819 36-402 0.03-0.1 29-1,223 0 168-11,820 6-646 0-40 86-5,107 8-90 Pit Water Range (mg/L) 7.3-9.3 277-14,520 84-661 29-1,220	7.6 7401 130 0.07 0 3,766 199 20 1,639 48 Avg 8.18 76 261 296	Dates 3/89-11/93 3/89-11/93 3/89-11/93 3/89-11/93	Groundwater n Range (mg/L) 9 7-8.4 9 482-4,249 9 168-514 9 41-755	Avg 7.5 2.440
TDS Arsenic Barium Bicarbonate Boron Cadmium Calcium Carbonate Chloride Chromium Lead Magnesium Mercury Nitrogen Selenium Silver Sodium Sulfate Site: Location: Status: No. Pits: Area:	5/89 3/92 3/92 3/92 5/89 3/92 3/92 3/92 3/92 3/92 5/89 Arrow/Calumet Canadian Co. , Conactive 7 2.6 acres (112,7 Dates 11/93 11/93 11/93 11/93 11/93 11/93	Range (mg/kg) 1 1849 0.02 0.6 0.02 0.05 69 0.022 0.032 0.002 0.004 0.001 565 Pit Sludge Range (mg/kg) 4 429 1 190 57	1849 0.02 0.6 <0.005 69 0.22 0.032 <0.002 0.004 <0.01 565 Avg 8.4 429 190 57 0		3/92 3/92 3/92 3/92 3/92 3/92 3/92 3/92	3 5 5 2 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Range (mg/L) 7-8 442-22,819 36-402 0.03-0.1 29-1,223 0 168-11,820 6-646 0-40 86-5,107 8-90 Pit Water Range (mg/L) 7.3-9.3 277-14,520 84-661 29-1,220 0-285	7.6 7401 130 0.07 0 3,766 199 20 1,639 48 Avg 8.18 76 261 296 59	Dates 3/89-11/93 3/89-11/93 3/89-11/93 3/89-11/93	Groundwater n Range (mg/L) 9 7-8.4 9 482-4,249 9 168-514 9 41-755 9 0	Avg 7.5 2,440 347 405 0
TDS Arsenic Barium Bicarbonate Boron Cadmium Carbonate Chloride Chromium Lead Magnesium Mercury Nitrogen Selenium Silver Sodium Sulfate Site: Location: Status: No. Pits: Area:	5/89 3/92 3/92 3/92 5/89 3/92 3/92 3/92 3/92 3/92 3/92 5/89 Arrow/Calumet Canadian Co., Cinactive 7 2.6 acres (112,7) Dates 11/93 11/93 11/93 11/93 11/93 11/93 11/93	Range (mg/kg) 1 1849 0.02 0.6 < 0.005 69 0.22 0.032 0.002 0.004 0.004 0.01 565 Pit Sludge Range (mg/kg) 1 8.4 1 90 1 90 1 57 0 0 55	1849 0.02 0.6 <0.005 69 0.22 0.032 <0.002 0.004 <0.01 565 Avg 8.4 429 190 57 0 55		3/92 3/92 3/92 3/92 3/92 3/92 3/92 3/92	3 5 5 2 5 3 5 5 2 5 5 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8	Range (mg/L) 7-8 442-22,819 36-402 0.03-0.1 29-1,223 0 168-11,820 6-646 0-40 86-5,107 8-90 Pit Water Range (mg/L) 7.3-9.3 277-14,520 84-661 29-1,220 0-285 54-8,500	7.6 7401 130 0.07 0 3,766 199 20 1,639 48 Avg 8.18 76 261 296 59 3,807	Dates 3/89-11/93 3/89-11/93 3/89-11/93 3/89-11/93 3/89-11/93	Groundwater n Range (mg/L) 9 7-8.4 9 482-4,249 9 168-514 9 41-755 9 0 9 7-1,469	Avg 7.5 2,440 347 405 0 660
TDS Arsenic Barium Bicarbonate Boron Cadmium Calcium Carbonate Chloride Chromium Lead Magnesium Mercury Nitrogen Selenium Silver Sodium Sulfate Site: Location: Status: No. Pits: Area: PH TDS Bicarbonate Calcium Carbonate Calcium Carbonate Chloride Magnesium	5/89 3/92 3/92 5/89 3/92 3/92 3/92 3/92 3/92 3/92 5/89 Arrow/Calumet Canadian Co., Clinactive 7 2.6 acres (112,7) Dates 11/93 11/93 11/93 11/93 11/93 11/93 11/93 11/93	Range (mg/kg) 1849 0.02 0.6 <	1849 0.02 0.6 <0.005 69 0.22 0.032 <0.002 0.004 <0.01 565 Avg 8.4 429 190 57 0 55 49		3/92 3/92 3/92 3/92 3/92 3/92 3/92 3/92	3 5 5 2 5 3 5 5 2 5 5 5 5 5 5 5 5 5 5 5	Range (mg/L) 7-8 442-22,819 36-402 0.03-0.1 29-1,223 0 168-11,820 6-646 0-40 86-5,107 8-90 Pit Water Range (mg/L) 7.3-9.3 277-14,520 84-661 29-1,220 0-285 54-8,500 40-5,420	7.6 7401 130 0.07 0 3,766 199 20 1,639 48 Avg 8.18 76 261 296 59 3,807 2,692	Dates 3/89-11/93 3/89-11/93 3/89-11/93 3/89-11/93 3/89-11/93 3/89-11/93	Groundwater n Range (mg/L) 9 7-8.4 9 482-4,249 9 168-514 9 41-755 9 0 9 7-1,469 9 22-574	Avg 7.5 2,440 347 405 0 660 280
TDS Arsenic Barium Bicarbonate Boron Cadmium Calcium Carbonate Chloride Chromium Lead Magnesium Mercury Nitrogen Selenium Silver Sodium Sulfate Site: Location: Status: No. Pits: Area: PH TDS Bicarbonate Calcium Carbonate Chloride Magnesium Nitrogen	5/89 3/92 3/92 3/92 5/89 3/92 3/92 3/92 3/92 3/92 5/89 Arrow/Calumet Canadian Co Cinactive 7 2.6 acres (112,7) Dates 11/93 11/93 11/93 11/93 11/93 11/93 11/93 11/93 11/93	Range (mg/kg) 1 1849 0.02 0.6 0.02 0.05 69 0.032 0.002 0.004 0.001 565 Pit Sludge Range (mg/kg) 1 8.4 429 1 190 57 1 0 55 49 5	1849 0.02 0.6 <0.005 69 0.22 0.032 <0.002 0.004 <0.01 565 Avg 8.4 429 190 57 0 55 49 5		3/92 3/92 3/92 3/92 3/92 3/92 3/92 3/92	3 5 5 2 5 3 5 5 2 5 5 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8	Range (mg/L) 7-8 442-22,819 36-402 0.03-0.1 29-1,223 0 168-11,820 6-646 0-40 86-5,107 8-90 Pit Water Range (mg/L) 7.3-9.3 277-14,520 84-661 29-1,220 0.285 54-8,500 40-5,420 5-22	7.6 7401 130 0.07 0 3,766 199 20 1,639 48 Avg 8.18 76 261 296 59 3,807 2,692 14	Dates 3/89-11/93 3/89-11/93 3/89-11/93 3/89-11/93 3/89-11/93 3/89-11/93	Groundwater n Range (mg/L) 9 7-8.4 9 482-4,249 9 168-514 9 41-755 9 0 9 7-1,469 9 22-574 3 1-5	Avg 7.5 2,440 347 405 0 660 280 2
TDS Arsenic Barium Bicarbonate Boron Cadmium Calcium Carbonate Chloride Chromium Lead Magnesium Mercury Nitrogen Selenium Silver Sodium Sulfate Site: Location: Status: No. Pits: Area: PH TDS Bicarbonate Calcium Carbonate Chloride Magnesium Nitrogen Potassium	5/89 3/92 3/92 3/92 3/92 3/92 3/92 3/92 3/9	Range (mg/kg) 1 1849 0.02 0.6 1 0.02 0.6 1 0.025 0.032 0.0002 1 0.004 0.001 565 Pit Sludge Range (mg/kg) 1 8.4 1 190 57 1 0 55 1 1 55 1 1 12	1849 0.02 0.6 <0.005 69 0.22 0.032 <0.002 0.004 <0.011 565 Avg 8.4 429 190 57 0 55 49 5 12		3/92 3/92 3/92 3/92 3/92 3/92 3/92 3/92	3 5 5 2 5 3 5 5 2 5 5 5 5 5 5 5 5 5 5 5	Range (mg/L) 7-8 442-22,819 36-402 0.03-0.1 29-1,223 0 168-11,820 6-646 0-40 86-5,107 8-90 Pit Water Range (mg/L) 7.3-9,3 277-14,520 84-661 29-1,220 0.285 54-8,500 40-5,420 5-22 3-58	7.6 7401 130 0.07 0 3,766 199 20 1,639 48 Avg 8.18 76 261 296 59 3,807 2,692 14 24	Dates 3/89-11/93 3/89-11/93 3/89-11/93 3/89-11/93 3/89-11/93 11/93 3/89-11/93	Groundwater n Range (mg/L) 9 7-8-4 9 482-4,249 9 168-514 9 41-755 9 0 9 7-1,469 9 22-574 3 1-5 9 40-113	Avg 7.5 2,440 347 405 0 660 280 2
TDS Arsenic Barium Bicarbonate Boron Cadmium Calcium Carbonate Chloride Chromium Lead Magnesium Mercury Nitrogen Selenium Silver Sodium Sulfate Site: Location: Status: No. Pits: Area: PH TDS Bicarbonate Calcium Carbonate Calcium Carbonate Chloride Magnesium Nitrogen Potassium Sodium	5/89 3/92 3/92 3/92 5/89 3/92 3/92 3/92 3/92 3/92 3/92 3/92 5/89 Arrow/Calumet Canadian Co., Cinactive 7 2.6 acres (112,7) Dates 11/93 11/93 11/93 11/93 11/93 11/93 11/93 11/93 11/93 11/93 11/93 11/93 11/93 11/93 11/93	Range (mg/kg) 1849 0.02 0.6 <0.005 69 0.22 0.032 <0.002 0.004 <0.01 565 Pit Sludge Range (mg/kg) 8.4 429 190 57 0 1555 49 5 12 61	1849 0.02 0.6 <0.005 69 0.22 0.032 <0.002 0.004 <0.01 565 Avg 8.4 429 190 57 0 55 49 5 12 61		3/92 3/92 3/92 3/92 3/92 3/92 3/92 3/92	3 5 5 2 5 3 5 5 2 5 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Range (mg/L) 7-8 442-22,819 36-402 0.03-0.1 29-1,223 0 168-11,820 6-646 0-40 86-5,107 8-90 Pit Water Range (mg/L) 7.3-9.3 277-14,520 84-661 29-1,220 0-285 54-8,500 40-5,420 5-22 3-58 46-3,000	7.6 7401 130 0.07 0 3,766 199 20 1,639 48 Avg 8.18 76 261 296 59 3,807 2,692 14 24 1,379	Dates 3/89-11/93 3/89-11/93 3/89-11/93 3/89-11/93 3/89-11/93 11/93 3/89-11/93 3/89-11/93	Groundwater n Range (mg/L) 9 7-8.4 9 482-4,249 9 168-514 9 41-755 9 0 9 7-1,469 9 22-574 3 1-5 9 40-113 9 31-1,963	Avg 7.5 2,440 347 405 0 660 280 2 74 738
TDS Arsenic Barium Bicarbonate Boron Cadmium Calcium Carbonate Chloride Chromium Lead Magnesium Mercury Nitrogen Selenium Silver Sodium Sulfate Site: Location: Status: No. Pits: Area: PH TDS Bicarbonate Calcium Carbonate Chloride Magnesium Nitrogen Potassium	5/89 3/92 3/92 3/92 5/89 3/92 3/92 3/92 3/92 3/92 3/92 3/92 5/89 Arrow/Calumet Canadian Co., Cinactive 7 2.6 acres (112,7) Dates 11/93 11/93 11/93 11/93 11/93 11/93 11/93 11/93 11/93 11/93 11/93 11/93 11/93 11/93 11/93	Range (mg/kg) 1849 0.02 0.6 <0.005 69 0.22 0.032 0.002 0.004 0.01 565 Pit Sludge Range (mg/kg) 429 190 57 0 55 49 5 112 61 0	1849 0.02 0.6 <0.005 69 0.22 0.032 <0.002 0.004 <0.011 565 Avg 8.4 429 190 57 0 55 49 5 12		3/92 3/92 3/92 3/92 3/92 3/92 3/92 3/92	3 5 5 2 5 3 5 5 2 5 5 5 5 5 5 5 5 5 5 5	Range (mg/L) 7-8 442-22,819 36-402 0.03-0.1 29-1,223 0 168-11,820 6-646 0-40 86-5,107 8-90 Pit Water Range (mg/L) 7.3-9,3 277-14,520 84-661 29-1,220 0.285 54-8,500 40-5,420 5-22 3-58	7.6 7401 130 0.07 0 3,766 199 20 1,639 48 Avg 8.18 76 261 296 59 3,807 2,692 14 24	Dates 3/89-11/93 3/89-11/93 3/89-11/93 3/89-11/93 3/89-11/93 11/93 3/89-11/93	Groundwater n Range (mg/L) 9 7-8-4 9 482-4,249 9 168-514 9 41-755 9 0 9 7-1,469 9 22-574 3 1-5 9 40-113	Avg 7.5 2,440 347 405 0 660 280 2

Cit-	Dell Desert														
Site:	Ball Ranch	014													
Location:	Garvin Co.,	, OK								. "					
Status:	inactive														
No. Pits:	4		- 9.						17						
Area:	9.4 acres (4	08,000	π ⁻)												
Medium			Pit Sludge					Pit Water					G	roundwater	
	Dates	n	Range (mg/kg)	Avg		Dates	n	Range (mg/L)	Avg	1		Dates	n	Range (mg/L)	Avg
pН						8/90	5	6.9-8.3	7.7:	2		1/87-1/97	36	6.4-8.4	7.8
TDS						8/90	- 5	6,344-8,527	7,74	6		1/87-1/97	32	391-904	576
Bicarbonate						8/90	4	92-156	139)		1/87-1/97	31	0-790	341
Boron						8/90	4	7.72-9.43	7.7			1/87-1/97	32	0-0.78	0.32
Calcium						8/90	4	170-290	215			1/87-1/97	35	36-119	61
Carbonate												1/87-1/97	18	0-17	6.5
Chloride						8/90	5	3,100-4,900	4,24	0		1/87-1/97	37	8-183	52
Magnesium						8/90	4	40-60	50			1/87-1/97	33	24-64	39
Nitrogen						8/90	3	0-1	0.5			1/87-1/97	33	0-20	3.7
Potassium												1/87-1/97	14	1-8	4
Sodium					* 4	8/90	4	2,010-2,700	2,43	5 .		1/87-1/97	33	13-119	59
Sulfate						8/90	4	100-300	250			1/87-1/97	33	16-141	53
Kv (cm/s)	ą.		1E-6 - 1E-9			-,00	* .		2.00		1	1101-1101	55	10-141	55
\															
Site:	 BC													-,	
Location:	Atoka Co., C	эк													
Status:	inactive														
No. Pits:	5				*.										
Area:	7.9 acres (3	42.100	ft ²)												
. Ti ou.		, 100	/												
Medium			Pit Sludge					Dit Mates							
Mediaiil	Dates	n	Range (mg/kg)	A		Deter		Pit Water						roundwater	
-11	Dates	"	Range (mg/kg)	Avg		Dates	n	Range (mg/L)	Avg	l		Dates	n	Range (mg/L)	Avg
pH	10/04											6/96	3	7.37-8.11	7.72
Arsenic	12/94	1	<0.001	<0.001								6/96			
Barium	12/94	1	0.05	0.05								6/96			
Cadmium	12/94	1	<0.005	<0.005								6/96			
Calcium	2/95	6	31.6-56.9	41.2								6/96			
Chloride						7/96-5/93	33	78-7,575		2,677		6/96	22	5-780	224
	Dates	n	Range (mg/kg)	Avg		Dates	n	Range (mg/L)	Avg	1		Dates	n	Range (mg/L)	Avg
Chromium	12/94	- 1	0.7	0.7			- 1					6/96			
Lead	12/94	- 1	<0.1	<0.1								6/96			
Magnesium	2/95	6	7.3-11.5	9.8								6/96			
Mercury	12/94	- 1,	<0.002	<0.002								6/96			
Selenium	12/94	1	< 0.002	<0.002								6/96			
Silver	12/94	1	<0.01	< 0.01								6/96			
Sodium	 2/95	6	1.8-5.3	3.4								6/96			
Site:	Blehm														
Location:	Blaine Co., 0	OK													
Status:	active														
No. Pits:	8-12														
Area:	30.3 acres (1.32 m	illion ft ²)												
*	•														
Medium			Pit Sludge					Pit Water						roundwater	-
	Dates	n	Range (mg/kg)	Avg	1.0	Dates	n	Range (mg/L)	Avg			Dates			A
pН	1/89	1	5.9	5.9	1.	1/90-1/00	139	7.02-10.21	7.96				n 120	Range (mg/L) 5.9-9.24	Avg
Conductivity (μ)	1/89	1	950	950		4/96	139	10,410	10,41			7/88-1/00	130		7.45
TDS	1/05	'	550	330		4/96 4/96-8/98	2					10/88-3/89	6	3,530-325,000	76,362
Arsenic	1/89	1	. 5 .	5		4/30-0/30		6,871-140,805	73,83	00		7/88-3/89	10	2,330-247,000	33,658
Barium	1/89	1	185.5	185.5		AIDE .	4	•				1/89	1	5	5
Bicarbonate	1,09	1.	100.0	100.0		4/96	1	0	0			1/89	1	185.5	185.5
Cadmium	1/89	4	5	5		4/96	1	224	224						
	1/89	1	. 5	5		4/00 0/00	_	400 0 407		_		1/89	1	5	5
Calcium						4/96-8/98	2	122-2,427	1,27	5		7/88-3/89	10	4-2,280	750
Carbonate	4100					4/96	1	0	. 0					4.5	
Chloride	1/89	1	4	. 4		10/89-1/00	148	65-80,890	12,39	3		7/88-1/00	141	78-130,000	6,123
Chromium	1/89	1	16	16								1/89	.1	16	16
Lead	1/89	1.	1	. 1		4						1/89	, 1,	1	1
Magnesium					. 1	8/98	1	520	520			3/89	2	100-740	420
Manganese						4/96	1	95	95						
Nitrogen						4/96-8/98	2	<1	<1			7/88-3/89	8	0-1,200	192
Potassium						4/96-8/98	2	89-628	359						
Sodium						4/96-8/98	2	2,196-49,750	25,97	'3		7/88-3/89	9	365-90,620	13,532
Sulfate						4/96-8/98	. 2	434-6,590	3,51	2		7/88-3/89	8	1,460-5,600	2,914
Benzene												9/92	5	<0.002-0.087	0.019
Toluene												9/92	5	<0.002-0.149	0.031
Ethylbenzene												9/92	5	<0.002-0.012	0.004
Xylene												9/92	5	<0.002-0.108	0.023
TPH												9/92	5	<0.002-0.684	0.138
Bbls. Rec'd.	1989-99		2.82 MM											•	
DDIS. INCC G.															

		* :									
Site:	Bluff		1.00								
Location:	Major Co., OK										
Status:											
	active										
No. Pits:	3										
Area:	14.1 acres (613,32	20 ft²)									
						and the second					
Medium		Pit Sludge				Pit Water				Groundwater	
	Dates n	Range (mg/kg)	Avg	Dates	n	Range (mg/L)	Avg		Dates	n Range (mg/L)	Avg
pH	2/97 2	7-7.1	7.05	12/92-1/00	12	7.5-8.2	7.8		1/93-8/99	143 6.82-12.8	8.39
Conductivity (µ)	2/97 2	381,000-531,000	456,000	7/95-1/00	11	22,700-167,000	75,818		1/93-8/99	137 1,600-121,900	37,339
TDS	2/97 2	251,460-350,460	300,960	10/90-1/00	30	525-181,645	45,855		10/90-8/99	160 3,379-116,787	30,039
Arsenic	2.0. 2	201,100,000,100	000,000	8/91	1	0.00001	0.00001		2/91-8/91	7 <0.0005-0.0027	
											0.0004
Barium				8/91	7	0.1-1	0.34		2/91-8/91	6 0.1-4.2	0.88
Bicarbonate				2/91-8/91	14	25-460	215		2/91-1/93	19 91-630	268
Boron	2/97 2	6.37-11.37	9						1/93	9 3.92-5.86	4.78
Calcium	2/97 2	5,643-6,102	5,873	2/91-1/00	26	92.8-3,590	990.7		2/91-8/99	147 13-1,995	898
Carbonate									1/93	9 0-18	6
Chloride									10/90-8/99	160 6-67,606	14,705
Chromium				8/91	7	0.01-0.04	0.03		2/91-8/91	6 <0.05-0.04	0.04
Lead		1.		8/91	7	<0.1	<0.1		2/91-8/91	7 <0.005	<0.005
Magnesium	2/97 2	668-954	811	2/91-1/00	26	0-5,400	593				
	2131 2	000-304	011						2/91-8/99	147 0-1,680	342
Mercury				8/91	7	0.01-0.21	0.12		2/91-8/91	7 <0.0005-0.18	0.09
Nitrogen				2/95-1/00	. 11,	0-13	1.4		1/93-8/99	137 0-8	1.9
Potassium	2/97 2	1,276-1,301	1289	2/91-1/00	24	5-510	112		2/91-8/99	147 0-1,203	166.1
Sodium	2/97 2	121,403-203,913	162658	2/91-1/00	26	23-61,670	13,001		10/90-8/99	150 130-40,070	9,424
Sulfate				2/91-1/00	25	30-26,500	4,370		2/91-8/99	148 34-9,000	3,618
Kv (cm/s)		1.1-8.5E-8									-,
Bbls. Rec'd	1992-97	1,000,000+		en de la companya de							
Site:	Bone 15-7-2						7.0		· · · · · · · · · · · · · · · · · · ·		
Location:	Love Co., OK										
Status:	inactive										
No. Pits:	1								4.		
	•	n.Z.									
Area:	0.7 acres (30,250	π)	100			40.00		and the first			
Marathana		D' OL I									
Medium	4 5 2 3	Pit Sludge	2.00			Pit Water				Groundwater	
	Dates n	Range (mg/kg)	Avg	Dates	n	Range (mg/L)	Avg		Dates	n Range (mg/L)	Avg .
Chloride				9/80-2/85	4	0-3,000	1,500				
									2000	·	
Site:	Bone 23-6-1	* .									
Location:	Love Co., OK										
Status:	inactive										
No. Pits:	1										
Area:	1.03 acres (45,000) ft2)					April 1980 April 1980				9.44
										The second second	
Medium		Pit Sludge				Pit Water				Groundwater	
	Dates n	Range (mg/kg)	Avg	Dates	n	Range (mg/L)	Avg		Dates		A
Chloride	DUI.00 11	riango (mg/ng/	,y	9/80-2/85	4	1,200-3,000			Dates	n Range (mg/L)	Avg
Onlonde		Contract to the contract of		9/00-2/00	4	1,200-3,000	2,125				
Site:	Dueli	·									·
	Buck								100		
Location:	Love Co., OK						1.2				
Status:	inactive									,	
No. Pits:	ŇA				, .						
Area:	NA										
. · ·						**					
Medium		Pit Sludge		•		Pit Water				Groundwater	
	Dates n	Range (mg/kg)	Avg	Dates	n .	Range (mg/L)	Avg		Dates	n Range (mg/L)	Avg
pH		(/			11/85	3 6.4-7.1	
Chloride		*. *.		•							6.7
				And the second second			1.1		11/85	3 6.8-30.3	21
Site:	Bullard 2-8-5						···········			· · · · · · · · · · · · · · · · · · ·	
Location:	Marshall Co., OK										
Status:	inactive										
No. Pits:	NA										
Area:	NA										
Medium		Pit Sludge				Pit Water				Groundwater	* -
	Dates n	Range (mg/kg)	Avg	Dates	n,	Range (mg/L)	Avg		Dates	n Range (mg/L)	Avg
рН									4/87-9/87	4 7.3-7.9	7.6
Chloride									4/87-9/87	4 7.5-63.5	40

Site:	Bullard 28-3-	-7											
Location:	Grady Co., C	ΣK											
Status:	inactive												
No. Pits:	4												
	1.9 acres (80	000 #	21										
Area:	i.e acres (ou	,900 11	1										
Medium			Pit Sludge				Pit Water			Gi	roundwater		
	Dates	n	Range (mg/kg)	Avg	Dates	n	Range (mg/L)	Avg	Dates	. n	Range (mg/L)	Avg	
pН					1/90	1	9.2	9.2	6/85-10/91	8	6.4-8.6	7.4	
TDS					1/90	1	3,667	3,667	12/90	3	185-957	584	
Chloride					1/90	1	751	751	6/85-10/91	8	47-2,145	379	
Chromium					1/90	1	0.24	0.24	0/00-10/51		47-2,145	, 313	
Iron													
					1/90	1	1.88	1.88					
Magnesium					1/90	1	732	732	12/90	2	20-64	42	
Potassium									6/85-12/90	6	7-89	28	
Silver					1/90	1	2.1	2.1					
Kv (cm/s)			2.5E-5 - 4.2E-7										
Site:	Carr City												-
Location:	Seminole Co	., OK											
Status:	inactive												
No. Pits:	4												
Area:	4.4 acres (19	2.500	ft ²)										
		_,000	,								1		
Modium			Dit Clude -				D# 141 :						
Medium	D		Pit Sludge				Pit Water				oundwater		
	Dates	n	Range (mg/kg)	Avg	Dates	n	Range (mg/L)	Avg	Dates	n .	Range (mg/L)	Avg	
pН	9/94	5	6.5-9.1	7.7	2/86-9/94	9	8.1-8.7	8.4	7/85-12/94	31	6.3-8.9	7.5	
TDS	9/94	5	80-2,880	917	2/86-9/94	9	285-3,900	1,230	7/85-12/94	16	280-1,252	552	
Arsenic	9/94	5	1.29-6.86	3.19	3/86	1	< 0.03	< 0.03					
Barium	9/94	5	47-373	135	2/86	1	0.16	0.16					
Bicarbonate	9/94	1	720	720			00	0.10	7/85-1/86	27	171-744	302	
Cadmium	5,5 .	•			2/86	1	<0.01	<0.01	7703-1700	21	171-744	302	
Calcium	9/94	1	4	4	2/00		~0.01	~0.01	7/05 4/00	07		40	
Carbonate	9/94	1	0	0					7/85-1/86	27	26-Dec	19	
						_							
Chloride	9/94	5	30-900	285	2/86-9/94	9	14-700	199	7/85-1/86	31	4-350	69	
Chromium	9/94	5	22.3-75.9	42.5	2/86	1	0.18	0.18					
Iron	9/94	1	4	4					7/85-1/86	0.06-1	0.3		
Lead	9/94	5	3.3-32.7	14.5									
Magnesium	9/94	1	1	1					7/85-1/86	27	0	0	
Potassium	9/94	1	20	20								•	
Selenium	9/94	5	0.01-0.04	0.02									
Silver	9/94	3	0.25-0.5	0.36									
Sodium	9/94	1	400	400	0.00		000	200					
					2/86	1	600	600	9/94	1	52,5	52.5	
Sulfate	9/94	1	1	1			_		7/85-1/86	27	8-160	84	
O&G		_			2/86	1	9	9					
Benzene	9/94	5	0.0002	0.0002	9/94	3	<0.0002	<0.0002					
Toluene	9/94	5	0.0002	0.0002	9/94	3	<0.0002	< 0.0002					
Ethylbenzene	9/94	5	0.0002	0.0002	9/94	3	<0.0002	<0.0002					
Xylene	9/94	5	0.0002	0.0002	9/94	3	< 0.0002	< 0.0002					
TPH	9/94	5	0.001	0.001	9/94	3	<0.001	< 0.001					
Kv (cm/s)			5.E-08										
/											•		
Site:	Courtney/Brig	agett			 				 		 -		-
Location:	Canadian Co												
		., UK											
Status:	active												
No. Pits:	4												
Area:	21.7 acres (9	45,000	ιπ-)										
Medium			Pit Sludge				Pit Water			Gr	oundwater		
	Dates	n	Range (mg/kg)	Avg	Dates	n	Range (mg/L)	Avg	Dates	- n	Range (mg/L)	Avg	
pН			5 5/	·	4/88-8/99	38	7.4-9.2	8.1	4/88-8/99	44	6.7-8.3	7.6	
TDS					4/88-8/99	30	1,148-44,682	6,682	4/88-8/99	22			
Arsenic					11/93	2			-100-0199	22	146-10,116	4,278	
							0.019-0.03	0.02	0/05 0/05	_	00 :-:	0.00	
Bicarbonate					8/95-8/98	13	142-335	250	8/95-8/96	6	98-471	262	
Boron					8/95-8/98	13	0.38-1.03	0.7	8/95-8/98	8	0.45-8.5	6	
Calcium					4/88-8/99	30	45-930	218	4/88-8/99	22	8-575	332	
Carbonate					8/95-8/98	13	0-17	2.2	8/95-8/96	6	0	0	
Chloride					4/88-8/99	42	287-10,000	2,385	4/88-8/99	56	10-2,322	535	
Chromium					11/93	2	u-0.06	0.03			,		
Magnesium					4/88-8/99	30	0-83	. 36	4/88-8/99	22	1-262	100	
Nitrogen					4/88-8/99	29	0-1	0.5	4/88-8/99	22	0-18	2.4	
Potassium					8/95-8/99	29	6-62	29	8/95-8/99	20			
Sodium					4/88-8/99	30	317-11,970				1-103	18	
								1,995	4/88-8/99	22	14-2,723	899	
					4/00 0/00	~~	240 5 222	1 0 1 0			45.0.000		
Sulfate Bbls. Rec'd.	1991-99		>586,090		4/88-8/99	30	310-5,300	1,010	4/88-8/99	22	15-6,322	2,113	

Site:	Eastern Tan												
Location:	Haskell Co.,	ok											
Status:	inactive												
No. Pits:	1												
Area:	2.2 acres (96	5,000 fi	t ²)										
Medium			Pit Sludge					Pit Water			G	oundwater	
	Dates	n	Range (mg/kg)	Avg		Dates	n	Range (mg/L)	Avg	Dates	n	Range (mg/L)	Ava
pH	Dates		range (mg/kg)	Avg		7/93-2/94	6	7-8	7.5				Avg
Chloride						7/93-2/94	6		7.5 402	2/87-7/96	20	6.7-7.9	7.2
Chloride						1/93-2/94	ь	3-2,411	402	2/87-7/96	20	1.5-50	. 15
Site:	Fala.			<u>.</u>		<u>_</u>		*.		 			
Location:	Eola Garvin Co., (214											
Status:	active	JK								•			
No. Pits:	18												
Area:	47.5 acres (2	2.07 mi	illion ft")										
Medium			Pit Sludge					Pit Water			Gı	oundwater	
	Dates	n	Range (mg/kg)	Avg		Dates	n	Range (mg/L)	Avg	Dates	n	Range (mg/L)	Avg
рН						1/91-1/99	146	6.6-9.4	8.2	1/91-1/99	66	6.3-11.6	7.8
TDS	9/98	1	19,506	19,506		6/91-9/97	80	596-20,000	3,614	1/91-1/96	32	116-1,720	766
Arsenic	9/98	1	1.38	1.38		9/97	1	<0.05	<0.05				
Bicarbonate						7/95-1/96	14	217-935	559	7/95-1/96	7	0-742	421
Boron						7/95-1/96	14	0.02-1.78	0.64	7/95-1/96	7	0-0.09	0.03
Calcium						7/95-1/96	1:4	23-65	41	7/95-1-96	7	2-109	54
Carbonate						7/95-1/96	14	0	. 0	7/95-1/96	7	0-204	47
Chloride						1/91-1/96	139	31-10,000	1,772	1/91-1/99	, 76	1.75-386	81
Chromium	9/98	1	34.8	34.8		7/96	1	2.06	2.06	1/51-1/55	70	1.75-300	óι
Magnesium	5/55	•	04.0	04.0		7/95-1/96	14	6-35	17.8	7/05 4/00	-	0.404	
Nitrogen					,					7/95-1/96	7	0-161	66.9
						7/95-1/96	14	0-1	0.71	7/95-1/96	7	0-1	0.14
Potassium						7/95-1/96	14	5-56	24.5	7/95-1/96	7	4-78	11.1
Sodium						7/95-1/96	14	148-1,808	830	7/95-1/96	7	19-122	88
Sulfate						7/95-1/96	14	20-526	170	7/95-1/96	7	16-494	187
O&G	9/98	. 1	8,030	8,030		9/97	1	35	35				
Benzene										10/92	7	<0.002	< 0.002
Toluene										10/92	7	<0.002	<0.002
Ethylbenzene										10/92	7	<0.002	< 0.002
Xylene										10/92	7	< 0.002	< 0.002
Bbls. Rec'd.	1990-96		1.5 MM+		1.								
Site:	Fuel Haulers		17										
Location:	Latimer Co.,	OK											
Status:	inactive												
No. Pits:	1												
Area:	0.3 acres (12	2,250 ft	²)										
Medium			Pit Sludge					Pit Water			Gr	oundwater	
	Dates	n ·	Range (mg/kg)	Avg		Dates	ń	Range (mg/L)	Avg	Dates	'n	Range (mg/L)	Avg
pH	11/82-12/82		4.6-8	7		11/82-8/86	30	2.9-8	5.8	11/82-8/86	22	6-7.6	6.8
TDS				•		11/82-12/82	28	78-8,470	2,985	11/82-12/82	21		
Arsenic	11/82-12/82	32	<3-35	18		11/82-8/86	30	<0.01-<0.5	0.08			29-1,085	371
Barium	11/82-12/82		39-5,015	543		11/82-8/86	30	0.18-290		11/82-8/86	22	<0.01-0.041	0 .
Cadmium	11/02-12/02	32	39-3,013	543					12.9	11/82-8/86	22	<0.02-3.6	. 1
	11/00 10/00					8/86	2 .	0.001-0.005	0.003	8/86	1	0.003	0
Chloride	11/82-12/82		540-900	1,384		11/82-12/82	26	<10-1,399	302	11/82-12/82	21	<10-142	43
Chromium	11/82-12/82		13-861	172		11/82-8/86	30	<0.01-3.15	0.61	11/82-8/86	22	<0.01-0.073	0.015
Iron	12/82	4	16,500-32,500	24,500		12/82	3	1.41-810	278	12/82	4	<0.1-0.53	0.31
Lead	7/86	1	48.3	48.3		8/86	. 2	0.03-0.9	0.47	8/86	1	< 0.02	<0.02
Magnesium						11/82-12/82	28	0.17-35.5	1.3				
Manganese	11/82-12/82	32	60-515	322						11/82-12/82	21	<0.02-9.7	1.04
Mercury	11/82-12/82	4	<0.05	<0.05		11/82	3	<0.0005-0.11	0.07	8/86	1	<0.002	<0.002
Selenium						8/86	2	0.008-0.072	0.04	8/86	1	0.0095	0.0095
Silver						8/86	2	<0.02-0.7	0.36				2.2200
Sodium	11/82-12/82	32	<500-21,950	5,829		11/82-12/82	27	<10-1,103	428	11/82-12/82	21	0.01-421	85
Sulfate	11/82-12/82		<2000-2000	<2000		11/82-12/82	28	20-6,433	1,427	11/82-12/82	21	<20-344	69
Zinc	11/82-12/82		7.5-320	151		11/82-12/82	19	0.004-40	3.96	11/82-12/82	17	0.004-58	9.3
TOC	,02-12/02	32	020	131		11/82-12/82	28	<5-237.6	3.96 49.2		21		
						11/02-12/02	20	70-231.0	49.2	11/82-12/82	21	<5-53.9	10

National Continue	Site:	Fuel Haulers 35-6-13	35-6-1	13									
14 carse (62,500 t ⁺) 15 carse (62,500 t	Location:	Pittsburg Co.	ş										
14 across (RZ-SOD III.) Prisologie Pri	No. Pits:	abandoned 1											
Property	Area:	1.4 acres (62,	,500 ft	J.									
Dates	Medium			Pit Sludge				Pit Water			G	undwater	
Beach 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		Dates	c ;	Range (mg/kg)	Avg	Dates	c (Range (mg/L)	Avg	Dates		Range (mg/L)	Avg
Sept. 15 11-143 1-143	Rarium	8/85-7/97	= 5	1 78-7 690	1 104	8/85-7/97	n (1	1 17-3 3	2.4				
1865 11 1801-1870 4554 5865 2 386-510 5069	Cadmium	8/85-7/97	υ 2	u-4.3	2	797	, -	u-0.018	; · >				
1867 1 1960 1963 121 1969 148 14	Calcinm	8/85	7	160-18,700	4,634	8/85	7	396-615	206				
885-777 11 1 1 20-160 30.018 3085 2 0.2151.40 0.019 885 7 1 0.019 985 7	Chloride	76/2	7	79-463	271	197	_	148	148				
8855 11 4 2005-1400 30,018 8855 2 0,2151-49 0.85 8857797 13 41/24 4,157 8855 2 0,2151-49 0.85 8857797 13 41/24 4,157 8855 2 0,2151-49 0.85 8857797 13 41/24 4,157 8855 2 0,2151-49 0.85 8857797 14 176-600 2,271 7,795 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Chromium	8/85-7/97	7	n-905	153	1/97	-	0.019	0.019				
## Septimal Control of the Control o		8/85	= :	4,900-61,000	30,018	8/82	α.	0.215-1.49	0.85				
81857197 10 1477 8100 2 2 0375 2 1498 8185 1 170-640 4157 8165 2 0375 2 1498 81857197 1 1414-410 2 1417 8165 2 1498 81857197 1 1414-410 2 1417 8165 2 1498 81857197 1 1414-410 2 1417 81 1414-410 2 1417 81 1414-410 2 1417 81	Lead	8/85-7/97	<u>e</u> ;	u-126	58	7/97	- (¬	5				
8865191 6 1,040 40 17 779 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Magnesium	8/85	= ;	1,800-7,640	4,057	8/82	~ 0	308-624	466				
### 1985 10 1983-1980 2.371 1985 2 2.286-3.310 2.786 1985 1985 2 2.286-3.310 2.786 1985 1985 2 2.286-3.310 2.786 1985 1985 2 2.286-3.310 2.786 2.786 1985 2 2.286-3.310 2.786	Marganese Marciny	8/85_7/07	_	178-960	423	2/07	۷ -	0.701-2.22	9. =				
8-865-707 10 10-87 3.3 707 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Potassium	8/85	2 و	u-0.44	2.371	8/85	- ~	32 2-39 2	35.7				
8.065-7767 13 0.245-261 3783 8.052 2.250-3.310 2.765 8.05 8.05 9.05 9.05 9.05 9.05 9.05 9.05 9.05 9	Selenium	5	2	6	-	26/2	1 -	1 1	; =				
Biology 10 1310-55 to 225-2310 2,785 1 1 1 1 1 1 1 1 1	Silver	8/85-7/97	1	11-8 7	er er	7/97		, =	, =				
1985-7787 1 0.25-281 88 7397 1 0.0 0 0 0 0 0 0 0 0 0	Sodium	8/85	2 6	1.310-9.510	3.783	8/85	۰ ،	2 260-3 310	2 785				
7197 1 1 1 1 1 1 1 1 1	Zinc	8/85-7/97	13	0.25-261	88	26/2			} =				
FPC Canadian Co., Cr. The Total Billings	Benzene	16/1	-	! !	} =	7/97			. =				
Tight 1	Toluene	76/7		; =), 3	7/97		, =	3 =				
FFC Canadian Co. Or. CA. Canadian Co. Or. Canadian Co. Canadian Co. Or. Canadian Co. Or. Canadian Co. Canadian Co. Or. Canadian Co. Or. Canadian Co.	Ethylbenzene	76/2	-			16/1	-	, 5	. =				
FPC	Xylene	76/7	-	_	5	197	-	. 5	5				
FPC Canadian Co., O.K. 1	TPH	7/97	-	3	. =	76/2	-	ם	5				
FPC Caracterist Caracteris	voc, svoc	76/7	-	3	5	26/2	-	,	3				
PPC Canadian Co., OK active Canadian Co., OK act	PCB					76/7	-	5	5				
Camadian Co., OK 10.2 acros (445,625 ft²) 10.3 acros (445,625 ft²)	Site:	FPC											
Control Cont	Location:	Canadian Co.	ķ										
5 10.2 acree (445,625 ft*) PH Sludge Dates Avg Dates	Status:	active											
1012 across (445,625 ff.*) 1012 across (445,625 ff.*) PH Sludge Dates	No. Pits:	2											
Harriage Hit Shudge Hit S	Area:	10.2 acres (4-	45,625	2#5)									
Tit Sunage Pirt National Fire Sunage Pirt Water P						,							
(ii)	Medium	-		Pit Sludge	V.,A	e de	•	Pit Water	¥	ď	9	undwater	
(4) 1/88	Ŧ	Cales		(Rydin) agusy	ñ	2/98-2/00		7 07-8 5	6 × ×	2/08-2/00	= 5	Range (mg/L)	7 Avg
1/88 1 2.096 6 6/77442,237 18,075 2/99-200 13 441-2,117 1/88 1 2.124 2.098-200 6 1.88-454 275.3 2/99-200 13 441-2,117 1/88 1 2.124 2.088-200 6 1.88-454 275.3 2/99-200 10 146-200 1/88 1 0.283 2.289-200 6 1.08-4.24 1.84 2.99-200 10 0.14-0.82 1/88 1 0.114 2.749 1.08-200 6 1.44 2.3 2/99-200 10 0.14-0.82 1/88 1 0.111 0.111 0.114 2.3 2/99-200 10 0.22 1/88 1 0.111 0.111 0.111 0.111 0.114 2.3 2/99-200 10 0.14-0.82 1/88 1 0.111 0.111 0.283-33,100 5.029 1/87-200 10 1.4-1-1.90 1 0.112 0.118	Conductivity (µ)					2/98-2/00		9.930-51.100	24.255	2/99-2/00	<u>.</u>	644-2740	1.878
1/88 1 2.096 2.096 2.096 168-454 275.3 2/99-200 10 185-293 1/6-20 10 184-24 184 2/99-200 10 185-293 185-293 199-200 10 185-293 10 <th< td=""><td>TDS</td><td></td><td></td><td></td><td></td><td>2/98-2/00</td><td>9</td><td>6,774-42,237</td><td>18,075</td><td>2/98-2/00</td><td>5 5</td><td>441-2.117</td><td>1,302</td></th<>	TDS					2/98-2/00	9	6,774-42,237	18,075	2/98-2/00	5 5	441-2.117	1,302
1/88 1 212.4 212.4 218.2	Arsenic	1/88	-	2.096	2.096							•	
288-200 6 168-454 275.3 269-200 10 185-233 269-200 10 185-233 269-200 10 185-233 269-200 10 185-233 269-200 10 185-233 269-200 10 185-233 269-200 10 185-233 269-200 10 1879-2	Barium	1/88	-	212.4	212.4	-							
1/88 1 0.263 0.263 299-200 6 1.08-4.24 1.84 2.99-200 10 0.14-0.82 2.99-200 10 0.14-0.82 2.99-200 10 0.14-0.82 2.99-200 10 0.14-0.82 2.99-200 10 0.22 2.99-200 10 0.22 2.99-200 10 0.22 2.99-200 10 0.22 2.99-200 10 0.22 2.99-200 10 0.22 2.99-200 10 0.111 0.111 0.111 2.99-200 6 0.418 58 2.99-200 10 1.4 2.99-200 10 0.42 2.99-200 10 0.92 2.90-200 10 0.92 2.90-200 10 0.92 2.90-200 10 0.92 2.90-200 10 0.92 2.90-200 10 0.92 2.90-200 10 0.92 2.90-200 10 0.92 2.90-200 10 0.92 2.90-200 10 0.92 2.90-200 10 0.92 2.90-200 10 0.92 2.90-200 10 0.92 2.90-200 10 0.92 2.90-200 10 0.92 2.90-200 2.90-20	Bicarbonate					2/98-2/00	9	168-454	275.3	2/99-2/00	9	185-293	225
1/88 1 2,749 2,749 1,88-200 6 0-14 2.3 2,99-200 10 35-425 1/88 1 1 0,111 0,111 2,98-200 6 0-14 2.3 2,99-200 10 0-22 1/88 1 0,111 0,111 2,99-200 6 9-187 63 2,99-200 10 1-97 1/88 1 0,111 0,111 2,99-200 6 29-118 58 2,99-200 10 14 2,99-200 6 2,9-118 58 2,99-200 10 14 2,99-200 6 2,9-118 58 2,99-200 10 14 2,99-200 6 1,320-3,584 2,289 2,99-200 10 21-1,092 1,99-200 10 21-	Boron	700	•	0.063	282	00/2-96/2	9	1.08-4.24	1.84	2/99-2/00	9	0.14-0.82	0.473
1/88 1 2/749 2/749 1/88-2/00 6 0-14 2.3 2/99-2/00 10 0-24-2 1/88 1 10/181 2/249 1/88-2/00 64 355-33/100 5,029 1/879-2/00 107 1-800 1/88 1 10/111 0.111 2/289-2/00 6 20-11 63 2/29-2/00 10 16-97 1/88 1 0.111 0.111 2/289-2/00 6 20-118 58 2/99-2/00 10 14-2 2/28-2/00 6 2/262-1/3 80 5,991 7/89-2/00 13 47-236 2/28-2/00 6 1/320-3,884 2,289 2/99-2/00 13 47-236 2/28-2/00 6 1/320-3,884 2,289 2/99-2/00 10 21-1.092 2/28-2/00 7 1/320-3,884 2,289 2/99-2/00 13 47-236 2/28-2/00 8 1/320-3,884 2,289 2/99-2/00 1	Calcium	90/-	-	0.500	0.503	2/98-2/00	ď	140-806	365	2/00/2/2007	ç	36 436	. 777
1/88 1 2,749 2,749 1/89-2/00 64 355-33,100 5,029 1/879-2/00 1/7 1-800 1/7 1-800 1/88 1 1/188 1 1/188 1 1/188 1 1/188 1 0.111 0.111 2289-2/00 6 29-187 63 2199-2/00 1/0 16-97 1/89-2/00 1/0 17 2/89-2/00 1/0 1/4 2/89-2/00 6 2,99-18 5,991 7/89-2/00 1/0 1/4 2/89-2/00 6 1,320-3,584 2,289 2/89-2/00 1/0 21-1,092 1/0,92 3 -0,002 1/0,92 3 -0,0	Carbonate					2/98-2/00	. 6	0-14	23	2/99-2/00	2 6	0-22	4
1/88 1 101.81 2.98-2/00 6 9-187 63 2/89-2/00 10 16-97 1/88 1 0.111 0.111 2.89-2/00 6 0-1 0.17 2.89-2/00 10 0-3 2/89-2/00 6 2.9-1/8 58 2/89-2/00 10 1-4 2/89-2/00 6 1,320-3,584 2,289 2/89-2/00 10 1-4 1/89-2/00 10 1/89-2	Chloride	1/88	-	2,749	2,749	1/89-2/00	64	355-33,100	5,029	1/879-2/00	107	1-800	183
1/88 1 0.111 0.111 2.08-200 6 9-187 63 2.09-200 10 16-97 2.08-200 6 0-1 0.17 2.09-200 10 0-3 2.09-200 6 1,320-3,584 2.289 2.09-200 10 1-4 2.09-200 6 1,320-3,584 2.289 2.09-200 10 1-4 2.09-200 10 1-4 2.09-200 10 1-4 2.09-200 10 1-4 2.09-200 10 1-4 2.09-200 10 1-4 2.09-200 10 1-4 2.09-200 10 1-4 2.09-200 10 1-4 2.09-200 10 1-4 2.09-200 10 1-4 2.09-200 10 1-4 2.09-200 10 1-4 2.09-200 10 1-4 2.09-200 10 1-4 2.09-200 10 1-4 2.00-2 2.09-200 10 1-4	Chromium	1/88	-	101.81									
1/88 1 0.111 0.111 2/98-200 6 0-1 0.17 2/99-200 10 0-3 2/98-200 6 29-118 58 2/99-200 10 1-4 2/98-200 6 2/98-200 6 2/99-200 10 1-4 2/98-200 6 1,320-3,584 2,289 2/99-200 10 2/9/200 2/9/200 10 2/9/200 10 2/9/200 10 2/9/200 10 2/9/200 10 2/9/200 10 2/9/200 10 2/9/200 10 2/9/200 10 2/9/200 10 2/9/200 10 2/9/200 10 2/9/200 10 2/9/200 10/9/20 3 40,002 10/9/20 3 40,002 10/9/20 3 40,002 10/9/20 3/9/200 10/9/200 10/9/200 10/9/200 10/9/2	Magnesium					2/98-2/00	9	9-187	63	2/99-2/00	10	16-97	72
2.98-2.00 6 0-1 0.17 2.99-2.00 10 0-3 2.98-2.00 6 2.9-18 5.8 2.99-2.00 10 1-4 2.98-2.00 6 1,320-3,584 2.28 2.99-2.00 10 21-1,092 2.98-2.00 6 1,320-3,584 2.28 2.99-2.00 10 21-1,092 2.98-2.00 6 1,320-3,584 2.28 2.99-2.00 10 21-1,092 2.98-2.00 10 21-1,092 3 40,002 2.1-5.1E-8 1987-99 3.91MM	Mercury	1/88	-	0.111	0.111								
298-200 6 29-118 58 2/99-200 10 14 298-200 6 2,262-13,980 5,991 7/89-200 13 47-236 298-200 6 1,320-3,584 2,289 2/99-200 13 21-1,992 248-200 6 1,320-3,584 2,289 2/99-200 13 21-1,992 248-200 6 1,320-3,584 2,289 2/99-200 13 21-1,992 24-5,1E-8 1987-99 3.91MM	Nitrogen					2/98-2/00	9	0-1	0.17	2/99-2/00	9	0-3	1.6
298-200 6 2,262-13,960 5,991 7/89-200 13 47-236 2,982-200 6 1,320-3,584 2,289 2,992-200 10 21-1,092 2 (10,92 3 < 0,002 10,92 3 < 0,002 (10,92 3 < 0,002 3 < 0,002 (10,92 3 < 0,002 3 < 0,002 (10,92 3 < 0,002 3 < 0,002 (10,92 3 < 0,002 3 < 0,002 (10,92 3 < 0,002 (10,92 3 < 0,002 (10,92 3 < 0,002 (10,92 3 < 0,002 (10,92 3 < 0,002 (10,92 3 < 0,002 (10,92 3 < 0,002 (10,92 3 < 0,002 (10,92 (Potassium					2/98-2/00	9	29-118	28	2/99-2/00	9	4	2.9
250-200 0 1,320-3,504 2,609 279-200 10 271-1,092 e 2.1-5.1E-8 1987-99 3.91MM	Sodium					2/98-2/00	9	2,262-13,980	5,991	7/89-2/00	<u>€</u> (47-236	110
1092 3 40,002 2.1-5.1E-8 40,002 1092 3 40,002 1092 3 40,002 1092 3 40,002	Sulfate					7/38-2/00	٥	1,320-3,584	2,289	2/99-2/00	2 ,	21-1,092	685
2.1-5.1E-8 1987-99 3.91MM	Tolliene									10/92	o "	×0.002	20.002
2.1-5.1E-8 40.002 3 <0.002 1987-99 3.91MM	Ethylbenzene									10/92	n	<0.002	<0.002
1987-99	Xylene									10/92	က	<0.002	<0.002
1987-99	Kv (cm/s)			2.1-5.1E-8								÷	
	Bbls. Rec'd.	1987-99		3.91MM									

Site:	Giles												
Location:	Grady County	, OK											
Status:	active	y, OK											
No. Pits:	2												
Area:	15.6 acres (6	20 nn	0 # ² \										
Alea.	15.0 acres (0	00,00	on)										
Medium			Pit Sludge					Pit Water					
Wicdiani	Dates	n	Range (mg/kg)	Avg		Dates	n	Range (mg/L)	Avg	 Datas		oundwater	A
pН	1/96-2/00	10	7.1-9	7.9		8/96-1/98	4	7.6-9.3	8.1	Dates 10/95-2/00	n	Range (mg/L)	Avg
Conductivity (µ)	8/96-2/00	9	12,960-72,300	26,129		8/96-1/98	5	13,400-16,400	14,650	10/95-2/00	22 22	6.3-9.4	7.9
TDS	8/96-2/00	. 9	8,554-47,718	17,406		8/96-1/98	5	9,999-38,902	17,289	10/95-2/00	22	635-24,300 419-18,644	14,664
Bicarbonate	8/96	1	844	844		8/92-2/97	4	56-207	125	10/95-2/00	3		11,310
Boron	8/96-2/00	9	0-2.86	1.46		8/96-1/98	5	1.8-14.73	10.59	10/95-2/97	3	83-168 8.09-10.69	111
Calcium	8/96-2/00	9	40-873	370.3		8/96-1/98	5	107-705	537		22		9.76
Carbonate	8/96	1	0	0		8/92-2/97	4	0	0	10/95-2/00 10/95-2/97	3	64-724	568
Chloride	8/96-2/00	. 9	2,007-20,683	5,690		8/96-1/98	5	1,938-30,962	8,717		22	0	0
Magnesium	8/96-2/00	9	2-184	36		8/96-1/98	5	5-171	124.8	10/95-2/00	22	9-6,573	3,395
Nitrogen	8/96	1	0	. 0		8/96-2/97	4	2-12	7.5		22	15-182	127
Potassium	8/96-2/00	9	31-345	89.1		8/96-1/98	5	14-62	7.5 32.6	10/95-2/00 10/95-2/00	21.	0-25 3-370	10 89
Sodium	8/96-2/00	9	2,332-16,182	5,579		8/96-1/98	5	2,936-3,812	762	10/95-2/00	22	20-5,730	3,146
Sulfate	8/96	1	1,814	1,814		8/96-2/97	4	3,971-4,879	4,391	10/95-2/00	22		
Benzene	12/97	. 1	<0.0002	<0.0002		0/30-2/37	-	3,371-4,073	4,551	10/93-2/00	22	8-5,427	3,951
Toluene	12/97	1	<0.0005	<0.0005									
Ethylbenzene	12/97	1	<0.0002	<0.0002									
Xylene	12/97	1	<0.0003	<0.0003									
TPH	12/97	1	<0.0002	<0.0002				*. *					
Kv (cm/s)			4.5E-8										
Bbls. Rec'd.	1995-99		1.08MM										
Site:	Gray							• • • • • • • • • • • • • • • • • • • •					
Location:	Grady Co., O	K											
Status:	abandoned												
No. Pits:	7												
Area:	8.5 acres (36	9,875	ft*)					1,5					
Medium			Pit Sludge					Pit Water			_		
Wediam	Dates	n	Range (mg/kg)	Avg		Dates	n	Range (mg/L)	Avg	Dates		oundwater	
Conductivity (µ)	Dates	- 11	range (mg/kg)	Avy		7/97	. 11	2,620-9,070	5,845	Dates	n'	Range (mg/L)	Avg
Arsenic	7/97	4	· · · u	u -		7/97	2	2,020-9,070 u	5,645 U				
Barium	7/97	4	0.68-1.7	1.35		7/97	2	0.65-0.85	0.75				
Cadmium	7/97	4	u	u		7/97	2	u.00-0.00	· u				
Chloride	7/97	4	19.7-926	361		7/97	2	788-2,690	1,739				
Chromium	7/97	4	u-0.072	0.018		7/97	2	0.008	0.008				4
Lead	7/97	4	u-0.37	0.15		7/97	2	. u	u				
Mercury	7/97	4	u u	u		7/97	2	u	u				
Selenium	7/97	4	u .	- u		7/97	2	u :	u			•	
Silver	7/97	4	u	u		7/97	2	u	u				
Zinc	7/97	4	u-1.08	0.88		7/97	2	0.052-0.056	0.054				
Benzene	2/97	4	u-0.084	0.032		7/97	2	u	u				
Toluene	2/97	4	u-0.118	0.048		7/97	2	u .	u				*
Ethylbenzene	2/97	4	u-0.157	0.06		7/97	2	u	ū				
Xylene	2/97	4	u-0.374	0.147		7/97	2	u	u.				
TPH	2/97	4	u-1,130	342		7/97	2	u.	u				
VOC, SVOC	2/97	5	u	ů		7/97	2	u	u				
Herb, Pest	2/97	5	u	u		7/97	2	u	u				
PCB	2/97	5	u '	ш		7/97	2	'u	. п				

												"	
	and the first												
Site:	Gray Farms												
ocation:	Garfield Co., C	OK .											
Status:	inactive							A SALE OF					
lo. Pits:	7												
rea:	12.8 acres (55	4,000 ft ²)					100						
										1.			
ledium		Pit Sludge					Pit Water	and the second			Gr	roundwater	
	Dates	n Range (mg/kg)	Avg		Dates	n ·	Range (mg/L)	Avg		Dates	n	Range (mg/L)	Avg
Н		100			2/89-2/00	45	6.2-8.2	7.5		7/85-2/00	195	6.6-8.7	7.9
DS					2/89-2/00	45	2,837-69,564	1,546		7/85-2/00	188	116-55,963	7,213
onductivity (µ)					2/89-2/00	43	4,450-95,100	46,436		2/89-2/00	180	177-65,500	9,495
rsenic	2/97	4 u	u										
arium	2/97	4 0.68-1.7	1.35	1 0	2/97	2	0.65-0.85	0.75	4,500	A4.			
icarbonate				- 1	2/89-2/00	44	30-432	154		2/89-2/00	180	18-342	161
oron					8/93-2/00	30	0-3.85	1.58		2/93-2/00	118	0-8.47	2
admium	2/97	4 u	u	5.00	2/97	2	u						- 1 - - 1 - 2 -
alcium		of such Taylor			2/89-2/00	45	149-2,760	1,015		2/89-2/00	180	18-1,572	362
arbonate					2/89-2/00	45	0-33	0.73		2/89-2/00	180	0-41	1.65
hloride	2/97	4 20-926	361	4 1	2/85-2/00	49							
hromium	2/97	4 20-926 4 u-0.072	0.02			. 49	788-53,000	17,894		7/85-2/00	202	6-27,703	2,631
					2/97		0.008	0.008					
ead	2/97	4 u-0.37	0.15		2/97	2	u			1			
agnesium					2/89-2/00	45	0-711	187		2/89-2/00	179	5-545	123
lercury	2/97	.4 u	u		2/97	2	u	u					
itrogen				13:50	2/89-2/00	45	0-40,000	1,143		2/89-2/00	179	0-51	1
elenium	2/97	4 u	u		2/97	2	u	u					
ilver	2/97	4 u	u		2/97	2	u	u		100			
odium			100		2/89-2/00	45	164-27,000	12,191		7/85-2/00	190	8-18,770	2,038
ulfate					2/89-2/00	45	0-9,370	2,712		7/85-2/00	190	8-9,091	1,764
inc	2/97	4 u-1.08	0.58		2/97	2	0.052-0.056	0.054					,
enzene	2/97	4 u-0.084	0.032	200	2/97	2	u	u		9/92	6	<0.002	<0.002
oluene	2/97	4 u-0.118	0.048		2/97	2	u	u		9/92	6	<0.002	<0.002
thylbenzene	2/97	4 u-0.157	0.06		2/97	2	u	ü	£	9/92	6	<0.002	<0.002
ylene	2/97	4 u-0.374	0.147		2/97	2	u	ŭ		9/92			
PH	2/97	4 u-1,130	342	100	2/97	2			1	9/92	6	<0.002	<0.002
oc, svoc	2/97	5 u			2/97-8/97		u	u					
			u			4.	u	u	wy y z			** -	
lerb, Pest	2/97	5 u	u :		2/97-8/97	4	u	u		and the second of			
СВ	2/97	5 u	· u		2/97	2	u	ů					
(v (cm/s)		2.95-9.57E-7			1.5								
bls. Rec'd.	1998-99	>2.05 MM					100						
		1000 1000										. <i>i</i>	
ite:	Guard 23-22N-	-13W		100									
ocation:	Major Co., OK											3.0	1.5
tatus:	active												
o. Pits:	3			2									
rea:	28.01 acres (1.	.22 million ft ²)	100					and the state of t					
edium		Pit Sludge		100			Pit Water				C.	oundwater	100
Juliani	Dates	n Range (mg/kg)	Avg		Dates			Avim		Dates			
Н						n	Range (mg/L)	Avg		Dates	n	Range (mg/L)	Avg
		14 5.5-12.4	8.3		8/90-2/98	5	7.3-8.1	7.6		5/90-1/00	62	6.6-8.5	7.7
onductivity (μ)		12 34,980-170,700	116,223		1/97-2/98	3	6,650-92,000	54,950		5/90-1/00	40	6,160-67,600	26,233
DS	8/97-1/00	12 23,087-120,050	82,881		1/97-2/98	3	5,473-82,814	46,886		5/90-1/00	42	5,428-46,747	21,298
carbonate					1/97-2/98	3	0	0		5/90	2	57-64	60.5
oron	8/97-1/00	12 0.55-17.75	4.48	. 5						5/90	2	4-5.21	4.6
alcium	8/97-1/00	12 454-4,125	2,333		1/97-2/98	3	496-1,905	1,373		5/90-1/00	40	21-860	648
arbonate					1/97-2/98	3	0	0		5/90	2	0	0
loride	8/97-1/00	19 353-107,614	41,504	7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	8/90-7/98	17	549-45,473	22,881		5/90-1/00	100	68-28,000	8,715
agnesium		12 12-1,089	257		1/97-2/98	3	176-597	358		5/90-1/00	39	105-422	269
trogen	8/97	3 0	0		1/97-2/98	3	0-1	0.33		5/90-1/00	40	0-21	7.1
otassium		12 154-464	276		1/97-2/98	3	13-165	99		5/90-1/00	38	0-21 5-64	21
odium		12 7.022-43,201	29.083		1/97-2/98	3	1,031-2,838	15,634		5/90-1/00			
ulfate				100							42	961-18,130	6773
	8/97-1/00	3 3,718-6,300	4,579		1/97-2/98	3	3,207-6,294	4,491		5/90-1/00	42	2,344-8,900	5,411
enzene			100		4.5	Sec. 1				7/92	4	<0.002	<0.002
luene			1.5							7/92	.4	<0.002	<0.002
hylbenzene				1			100		. * *	7/92	4, 4	<0.002	<0.002
vlene				of the second			The second second			7/92	. 74	<0.002	<0.002

1.9E-6 - 1.7E-8 2.28MM

Site: Location: Status: No. Pits: Area: Medium pH TDS Bicarbonate Calcium Chloride Magnesium Potassium Sodium Sodium Sodium Sodium	Site: Location: Status: No. Pits: Area: Medium Arsenic Barium Cadmium Chloride Chromium Chloride Chro	Location: Status: No. Pits: Area: Medium Arsenic Barium Cadmitum Chomium Lead Mercury Silver Zinc Benzene Toluene Ethylbenzene Tylene Ethylbenzene Xylene TPH VOC, SVOC Herb, Pest	₽ B
Highfill Woodward Co., OK inactive NA NA Dates n	Caddo Co., OK abandoned 1 2.4 acres (103,125 ft²) 2.4 press (103,125 ft²) 2.4 press (103,125 ft²) 2.4 press (103,125 ft²) 2.7	Mac Clain Co., OK abandoned 8 3.50 acres (152,461 ft²) Pit: Dates n Re 7197 4	Hamilton
ö. OX	200 200000000000 1 0	61 7	
Pit Sludge Range (mg/kg)	Pit Sludge Range (mg/kg) 2-3.73 -0.005 562-1.872 -0.005 -0.03-0.045 -0.005 -0.04-0.71 30-906 331-1.810 1,300-4,880 5,610-25,300 960-1.015	Pit Sludge Range (mg/kg) u 1.35-3.64 u -0.084 0.04-0.2 u -0.057 u-0.057 u-0.057 u-0.216 u-0.736 u-0.736 u-879 u	
	Avg 2.9 <0.005 1.217 <0.005 0.04 <0.001 0.48 468 468 1.071 3.090 15,455	Avg u 2,04 0,02 0,12 0,12 0,038 0,014 0,14 0,16 594	
Dates	Dates 7/97 7/97 8/86-7/97 7/97 7/97 7/97 7/97 7/97 7/97 7/97	Dates	
5			
Pit Water Range (mg/L)	Pit Water Range (mg/L) -0.03 -0.03 -0.005 -0.005 -0.005 -0.006 -0.01 -0.06 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	Pit Water Range (mg/L)	
>	Avg -0.03 -0.005 6.276 -0.005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005	₹	
Dates 5,95 5,95 5,95 5,95 5,95 5,95 5,95 5,9	Dates 9/92	Dates	
Groundwater n Range (mg/L) 1 7.2 1 7.465 1 75 1 622 1 2,600 1 1,930 1 126 1 2,982 1 2,982 1 0	Groundwater n Range (mg/L) 5 <0.002-0.684	Groundwater n Range (mg/L)	
Avg 7.2 7,465 75 622 2,600 1,930 1,930 1,930 2,982 2	Avg	Aw _g	

Site:	Hull 1-6-3														
Location:	Carter Co., 0	OK .													
Status:	inactive														
No. Pits:	2					•									
Area:	0.6 acres (2	5.300 fi	²)												
Medium		Pit SI	udao				Pit W	Votor			0.	oundwa	to.		
Mediaiii			-			B									
2.1.1.	Dates	n	Range (mg/kg)	Avg		Dates	n	Range (mg/L)	Avg		Dates	n	Range (mg/L)	Avg	
Chloride						3/81	2	600-1,200	900						
													٠.		_
Site	Hull 20-5-2				(Carter Co., Ol	<						inactive		
	2 pits, 0.27 a	acres (1	11,750 ft ²)												
Medium			Pit Sludge					Pit Water				Gr	roundwater		
	Dates	n	Range (mg/kg)	Avg		Dates	n	Range (mg/L)	Avg		Dates	n	Range (mg/L)	Avg	
Chloride						2/85	2	5,800-6,600	6,200				rango (mg/2)	, 9	
Cilionas						2/05	-	0,000-0,000	0,200						
Site:	Kelly									·					_
		٠.											,		
Location:	Mc Clain Co	., OK													
Status:	abandoned														
No. Pits:	5														
Area:	41.3 acres (1.8 mill	ion ft ²)												
													· I		
Medium			Pit Sludge	1.4				. Pit Water				Gr	roundwater		
	Dates	n	Range (mg/kg)	Avg		Dates	n	Range (mg/L)	Avg		Dates	n ·	Range (mg/L)	Avg	
pH	10/98	31	, man 90 (mg/19)	,9		24.55			7.179		8/98-9/98	. 2	8-8.2	8.1	
TDS	10/30					5/95	1	523	523		8/98-9/98	2		2,886	
Aluminum	10/98	31	5,230-23,400	12,426		3/93	. '	525	523		0/90-9/90	2	1,280-4,492	2,886	
	10/98	31	5,230-23,400	12,420								_	5.12		
Antimony						12.1					8/98-9/98	2 .	<0.35	<0.35	
Arsenic	10/98	23	1.47-6.38	4.21	*-	5/95	1	<0.005	<0.005		8/98-9/98	2	<0.06	<0.06	
Barium	10/98	31	73.6-17,500	3,976		5/95	1	<0.001	< 0.001		8/98-9/98	2 .	0.02-0.15	0.08	
Beryllium											8/98-9/98	2	<0.01	< 0.01	
Bicarbonate											8/98-9/98	2	171-437	304	
Boron											8/98-9/98	2	0.13-5.96	3	
Cadmium						5/95	1	<0.01	<0.01		8/98-9/98	2	<0.005	<0.005	
Calcium	10/98	31	1,490-36,700	19,011		5/55	•	40.01	٦٥.01		8/98-9/98	2	53-164	109	
	10/90	31	1,430-30,700	19,011											
Carbonate											8/98-9/98	2	. 0	0	
Chloride						9/80-5/95	5	118-1,800	984		10/92	25	7.5-527	132	
Chromium	10/98	31	9.29-176	43.8				111			8/98-9/98	. 2	<0.01	<0.01	
Copper	10/98	17	2.16-48.5	16.8							8/98-9/98	2	<0.01	< 0.01	
Iron	10/98	. 31	5,880-189,000	21,593		5/95	1	0.74	0.74						
Lead	10/98	31	5.09-203	62.5		5/95	1	< 0.002	< 0.002		8/98-9/98	2	< 0.05	< 0.05	
Magnesium	10/98	31	1,770-41,000	7,943		5/95	1	98	98		8/98-9/98	2	22-62	42	
Manganese	10/98	31	81.4-1,440	378		5/95	1	<0.002	<0.002			_			
Mercury						5/95	1	1.2	1.2		8/98-9/98	2	<0.0005	<0.0005	
Nickel	10/98	31	9.17-43.7	22		0,00	•				8/98-9/98	2	<0.025	<0.025	
	10/50	. 31	3.11-43.1	22											
Nitrogen											8/98-9/98	2	1-27	14	
Potassium	10/98	31	1,300-6,480	2,923							8/98-9/98	2	6-36	21	
Selenium	10/98	1	. 1.44	1.44							8/98-9/98	2	<0.07	<0.07	
Silver						5/95	1	0.08	0.08		8/98-9/98	2	<0.01	< 0.01	
Sodium	10/98	31	581-16,800	4,723							8/98-9/98	2	123-1,226	675	
Sulfate											8/98-9/98	2	39-2,335	1,187	
Titanium											8/98-9/98	2	<0.2	<0.2	
Vanadium	10/98	19	14.5-29.1	20.7								_	·		
Zinc	10/98	31	14.4-173	75							8/98-9/98	•	0.005-0.074	0.04	
											0/90-9/90	2	0.005-0.074	0.04	
TPH	10/98	24	70.9-24,548	5,192											
Benzene	6/98	3	u-6.3*	2.1											
Toluene	6/98	3	u-22*	7.3											
Ethylbenzene	6/98	3	u-67*	22.3											
M & P Xylene	6/98	. 3	180-940*	613											
O-Xylene	6/98	3	u-140*	46.7											
1,2,4-Trimethylbenzene		3	700*	700											
Naphthalene	6/98	3	92-920*	554									;		
		3		743											
Methylchloride	6/98	3	9.5-1,120*	143											
Bbls. Rec'd	1988-98		4.5MM												

Site:		Kirk											
ocation:		Carter Co., OK											
atus:		inactive											
o. Pits:		5											
ea:		ŅA											
								L					
edium			Pit Sludge					Pit Water				Groundwater	
		Dates n	Range (mg/kg)	Avg		Dates	n	Range (mg/L)	Avg		Dates	n Range (mg/L)	Avg
Η .						4/83	3	9.5-9.7	9.6				
hloride						4/83	3	429-1,446	960				
hromium					and the second	4/83	1	0.012	0.012				
ercury						4/83	1	13.6	13.6				
ilver						4/83	1	3.1	3.1				
te:		Lee/Triple L											
cation:		Marshall Co., OK			4								
atus:		inactive		* ,									
o. Pits:		3									•		
rea:		4.1 acres (180,000) ft ²)										
		111 40100 (100,000	,										
ledium			Pit Sludge					D: 14/-1					
ieaiam		. Datas a		A		D-4		Pit Water				Groundwater	
		Dates n	Range (mg/kg)	Avg		Dates	n	Range (mg/L)	Avg		Dates	n Range (mg/L)	Avg
H 						5/89-4/91	13	6.3-8.0	. 7		11/91	3 6.6-7.3	6.9
DS						4/91	5	420-3,473	1,583				
hloride						3/89-11/91	16	54-3,360	2,170		3/89-11/91	10 39.1-1,540	366
agnesium						11/90	1	. 300	300		11/90	3 138-168	152
&G						5/89	. 1	1.1	1.1				
·													
ite:		Little River Express											
ocation:		Pottawatomie Co.,	OK										
tatus:		inactive											
o. Pits:		9			2								
rea:		1.7 acres (74,100	ft ²)										
								\$ 1. July 1997					
edium			Pit Sludge					Pit Water				Groundwater	
.cu.u		Dates n	Range (mg/kg)	Ávg		Dates	n	Range (mg/L)	A		Dates		
4		Dates II	range (mg/kg)	Avy		2/84-9/93	11	7-9.1	Avg 7.9			n Range (mg/L)	Avg
os											9/83-1/84	14 6.8-8.1	7.5
						2/84-4/84	10	167-4,185	1,930		11/83-1/84	8 127-543	257
rsenic											1/84	5 <0.01-0.01	<0.01
arium						9/93	1	21	21		11/83	10 <0.2-0.38	0
	5										9/83-1/84	17 <10-38	
	**					2/84-9/93	11	<10-2,401	825				16
hromium	*					2/84-9/93 2/84-9/93	11 5	<10-2,401 0.02-4.3	825 1.3		9/83	9 <0.01-0.09	16 0.05
hromium ead	*									,		9 <0.01-0.09 5 <0.02-0.167	
hromium ead odium	*									į.	9/83		0.05
hromium ead odium						2/84-9/93	5	0.02-4.3	1.3	v.	9/83		0.05
hromium ead odium inc						2/84-9/93	5	0.02-4.3	1.3	i .	9/83 1/84	5 <0.02-0.167	0.05 0.06
hromium ead odium nc OC						2/84-9/93	5	0.02-4.3	1.3	ž	9/83 1/84 1/84 1/84	5 <0.02-0.167 3 <0.004-2.72 5 <5-15.5	0.05 0.06 0.93 6.3
nromium ead odium nc OC						2/84-9/93 2/84-4/84	5 4	0.02-4.3 476-700	1.3 584		9/83 1/84 1/84	5 <0.02-0.167 3 <0.004-2.72	0.05 0.06 0.93
nromium ead odium nc DC &G		Loio				2/84-9/93 2/84-4/84	5 4	0.02-4.3 476-700	1.3 584		9/83 1/84 1/84 1/84	5 <0.02-0.167 3 <0.004-2.72 5 <5-15.5	0.05 0.06 0.93 6.3
nromium ead odium nc OC &G		Loja Woods Co. OK				2/84-9/93 2/84-4/84	5 4	0.02-4.3 476-700	1.3 584		9/83 1/84 1/84 1/84	5 <0.02-0.167 3 <0.004-2.72 5 <5-15.5	0.05 0.06 0.93 6.3
hromium ead odium nc OC &G		Woods Co., OK				2/84-9/93 2/84-4/84	5 4	0.02-4.3 476-700	1.3 584	<i>(</i>	9/83 1/84 1/84 1/84	5 <0.02-0.167 3 <0.004-2.72 5 <5-15.5	0.05 0.06 0.93 6.3
nromium ead odium nc OC &G te: ocation: atus:		Woods Co., OK inactive				2/84-9/93 2/84-4/84	5 4	0.02-4.3 476-700	1.3 584	<i>(</i>	9/83 1/84 1/84 1/84	5 <0.02-0.167 3 <0.004-2.72 5 <5-15.5	0.05 0.06 0.93 6.3
nromium ead odium nc DC &G te: ccation: atus: D. Pits:		Woods Co., OK inactive NA	543			2/84-9/93 2/84-4/84	5 4	0.02-4.3 476-700	1.3 584	() () () () () () () () () ()	9/83 1/84 1/84 1/84	5 <0.02-0.167 3 <0.004-2.72 5 <5-15.5	0.05 0.06 0.93 6.3
hromium ead odium nc OC &G te: ocation: eatus: o. Pits:		Woods Co., OK inactive	5 ft ²)			2/84-9/93 2/84-4/84	5 4	0.02-4.3 476-700	1.3 584		9/83 1/84 1/84 1/84	5 <0.02-0.167 3 <0.004-2.72 5 <5-15.5	0.05 0.06 0.93 6.3
hromium ead odium inc OC &G cte: cocation: tatus: o. Pits: rea:		Woods Co., OK inactive NA				2/84-9/93 2/84-4/84	5 4	0.02-4.3 476-700 2-7	1.3 584	() () () () () () () () () ()	9/83 1/84 1/84 1/84	5 <0.02-0.167 3 <0.004-2.72 5 <5-15.5 1 2.9	0.05 0.06 0.93 6.3
hromium ead odium inc OC &G ite: ocation: tatus: o. Pits: rea:		Woods Co., OK inactive NA >0.4 acres (>15,62	Pit Sludge			2/84-9/93 2/84-4/84	5 4	0.02-4.3 476-700	1.3 584		9/83 1/84 1/84 1/84	5 <0.02-0.167 3 <0.004-2.72 5 <5-15.5	0.05 0.06 0.93 6.3
chloride chromium ead codium inc OC character cocation: ctatus: clo. Pits: crea:		Woods Co., OK inactive NA		Avg		2/84-9/93 2/84-4/84	5 4	0.02-4.3 476-700 2-7	1.3 584		9/83 1/84 1/84 1/84	5 <0.02-0.167 3 <0.004-2.72 5 <5-15.5 1 2.9	0.05 0.06 0.93 6.3
hromium ead odium inc OC &G cte: cocation: tatus: o. Pits: rea:		Woods Co., OK inactive NA >0.4 acres (>15,62	Pit Sludge	Avg		2/84-9/93 2/84-4/84 2/84-4/84	4	0.02-4.3 476-700 2-7	1.3 584 4.1		9/83 1/84 1/84 1/84 11/83	5 <0.02-0.167 3 <0.004-2.72 5 <5-15.5 1 2.9 Groundwater	0.05 0.06 0.93 6.3 2.9

Site:	Mabray		A									
ocation:	Atoka Co., OK											
tatus:	inactive											
lo. Cells:	4											
rea:	1.7 acres (>74,7	50 ft ²)										
	(,											
1edium		Pit Sludge					Pit Water				Groundwater	
•	Dates r	n Range (mg/kg)	Avg		Dates	n	Range (mg/L)	Avg		Dates	n Range (mg/L) Avg
hloride					7/89-7/94	39	850-3,200	1,878				,
Site:	Merkle		100				-					
.ocation:	Pottawatomie Co	o., OK										
tatus:	abandoned									-		
o. Pits:	12	ni.										
rea:	6.7 acres (292,50	00 ft²)	*									
ledium		Pit Sludge					Pit Water	_			Groundwater	
	Dates r	n Range (mg/kg)	Avg		Dates	n	Range (mg/L)	Avg		Dates	n Range (mg/L) Avg
1	7/07				0.00	•						
senic	7/97 3		u 4.5	100	8/97	3	u	u				
arium	7/97		1.5		8/97	3	0.15-0.24	0.19				
dmium	7/97		u		8/97	3	. u	u				
nloride	7/97		444		8/97	3	19.7-64.1	34.5				
romium	7/97		u		8/97	3 .	u-0.019	0.006				
ead	7/97		u'	•	8/97	3	u	u				
ercury	7/97 3		· u		8/97	3	, u	u [.]				
elenium	7/97		u		8/97	.3	u ·	u				
nc .	7/97 3		0.14		8/97	3	u-0.055	0.02				
nzene	7/97 3		U		8/97	3	u	u		7/97	,6 u .	u
oluene	7/97		u		8/97	. 3	u ·	. u		7/97	6 u-0.012	. u
hylbenzene	7/97 3		0.002		8/97	3	u	u		7/97	6 u	, u
rlene	7/97		0.005		8/97	3	u	ų .		7/97	6 · u	u
PH	7/97 3		392		8/97	2	u	· u		7/97	· 6 u	u
oc, svoc	7/97 2		u		8/97	2 -	u	u ·				
erb, Pest	7/97 2	2 . u	u				·					
te:	O'Daniel Gravel								·			
cation:	Maud, OK	,										
atus:	active										,	
o. Pits:	7											
ea:	15.6 acres (678,	000 ft ²)										
							1 .					
edium		Pit Sludge					Pit Water				Groundwater	
	Dates r	n Range (mg/kg)	Avg		Dates	n'	Range (mg/L)	Avg		Dates	n Range (mg/L) Avg
•												
1					5/90-3/00	55	7.19-11.8	8.71		5/90-3/00	198 4.9-12.81	7.43
nloride					5/90-3/00	59	132.1-2,400	983		5/90-3/00	208 1-1,534	175.2
enzene					1/97	1	<0.005	<0.005		7/92	1 <0.002	<0.002
luene					1/97	1	<0.005	<0.005		7/92	1 <0.002	<0.002
hylbenzene					1/97	1	<0.005	<0.005		7/92	1 <0.002	<0.002
rlene					1/97	1	<0.005	<0.005		7/92	1 <0.002	<0.002
PH					1/97	1	0.266	0.266				
v (cm/s)		2.1E-6-2.4E-8										
ols. Rec'd.	1989-98	1.59MM+										
	015.1.2	·									·	
e:	Oilfield Services	,										
cation:	Pittsburg Co., Ol	`										
atus:	inactive											
o. Pits: ea:	3 0.5 acres (19,87	5 # ² \										
ea.	0.5 acres (19,87)	5 it j										
edium		Pit Sludge					Pit Water				Groundwater	
suluill	Dates r		. Δ		Dates		Range (mg/L)	A		Dates		۸
senic	Dates r	range (mg/kg)	· Avg		9/96	n 1	<0.005	Avg <0.005		Dates	n Range (mg/L) Avg
senic nloride					9/96	1	32	32				
nioride agnesium					9/96	1	32 16.8	32 16.8				
agnesium Iver					9/96	1	0.16	0.16				
1401					2/30		0.10	0.10	100			

Site:		Parent/Casey													
ocation:		Pittsburg Co., OK													
tatus:	2.5	inactive													
o. Pits:		3													
rea:		7.2 acres (315,000)	ft ²)					4							
cu.															
edium			Pit Sludge					Pit Water					Gr	oundwater	
icuium		Dates n	Range (mg/kg)	Avg		Dates	n	Range (mg/L)	Avg			Dates	n O.	Range (mg/L)	Avg
H		Dates II	range (mg/kg)	Avg		5/87-10/95	3	6.8-7.8	7.4			37-10/95	5	6.9-7.8	7.2
hloride						5/87-10/95	6	310-2,849	1,149		.	10/95	5	2.5-80	34.7
lagnesium						10/95	2	113-125	119			10/95	2	28-32	30
DS						3/91-10/95	5	848-5,118	2,018			10/95	2 .	627-704	666
93	-					3/31-10/33		040-3,110	2,010			10/33		021-104	000
Site:		Peek & OMT	-,					 	 						
ocation:		Sarvin Co., OK													
Status:		inactive													
lo. Pits:		18				•									
rea:		4.6 acres (198,500	ft ²)							- 1					
iou.		(100,000			. 1										
ledium		Pit SI	ludge				Pit W	ater				Gro	oundwat	ter	
icaiaiii		Dates n	Range (mg/kg)	Avg	100	Dates	n	Range (mg/L)	- Avg			Dates	n	Range (mg/L)	Avg
Н		Da.03 11	· ····································			-4100	."	· ····································	Avy			85-5/90	13	6.5-7.9	7
DS .												85-4/88	7.	177-688	472
icarbonate												7/85	3	320-351	335
Calcium												7/85	3	175-224	205
hloride						1/86-1/89	3	1,360-2,400	1,929	100	7.	85-5/90	13	3.83-131	32
lagnesium						1700-1703		1,000-2,400	1,323			7/85	3	119-153	132
itrogen					100				* 2		2 E.	7/85	3	0-1	0
odium					7.1							7/85	3	61-96	. 77
ulfate			10 m								4 9 9 9	7/85	3.	82-265	170
v (cm/s)			5.8E-5 - 3.1E-8									1100		02-203	170
V (CIII/S)			3.0E-3 - 3.1E-0											1.1	
ite:		Pharoah													
ocation:	•	Garvin Co., OK						Acres No. 1						100	
Status:		inactive													
No. Pits:										9					
Area:															
		NA NA													
ii çu.		NA NA						er gr							
			Pit Sludge					Dit Water					0-	auadusta.	
		NA .	Pit Sludge	Δνα		Dates		Pit Water	Δνα			Dates		oundwater	Aum
/ledium			Pit Sludge Range (mg/kg)	Avg		Dates	n 1	Range (mg/L)	Avg			Dates	Gr n	oundwater Range (mg/L)	Avg
Medium DS		NA .		Avg		3/93	1	Range (mg/L) 1860	1860			Dates			Avg
fledium DS chloride		NA Dates n	Range (mg/kg)					Range (mg/L)				Dates			Avg
Medium TDS Chloride Chromium		Dates n	Range (mg/kg) <0.119	<0.119		3/93	1	Range (mg/L) 1860	1860			Dates			Avg
Medium DS Chloride Chromium on		Dates n 3/93 1 3/93 1	<pre>Range (mg/kg) <0.119 <0.904</pre>	<0.119 <0.904		3/93	1	Range (mg/L) 1860	1860			Dates			Avg
ledium DS hloride hromium on langanese		Dates n 3/93 1 3/93 1 3/93 1	<pre>Range (mg/kg) <0.119 <0.904 <0.0006</pre>	<0.119 <0.904 <0.0006		3/93	1	Range (mg/L) 1860	1860			Dates			Avg
Medium DS Chloride Chromium on Manganese Mercury		Dates n 3/93 1 3/93 1 3/93 1 3/93 1	<pre><0.119 <0.904 <0.0006 271</pre>	<0.119 <0.904 <0.0006 271		3/93	1	Range (mg/L) 1860	1860			Dates			Avg
Medium DS Chloride Chromium on Manganese Mercury		Dates n 3/93 1 3/93 1 3/93 1	<pre>Range (mg/kg) <0.119 <0.904 <0.0006</pre>	<0.119 <0.904 <0.0006		3/93	1	Range (mg/L) 1860	1860			Dates			Avg
fedium DS chloride chromium on fanganese fercury		Dates n 3/93 1 3/93 1 3/93 1 3/93 1 3/93 1	<pre><0.119 <0.904 <0.0006 271</pre>	<0.119 <0.904 <0.0006 271		3/93 1/85-3/93	1	Range (mg/L) 1860	1860			Dates			Avg
fledium DS chloride chromium on flanganese flercury iliver		Dates n 3/93 1 3/93 1 3/93 1 3/93 1 3/93 1 7-Oteet Oil Ltd	<0.119<0.904<0.00062710.135	<0.119 <0.904 <0.0006 271		3/93	1	Range (mg/L) 1860	1860			Dates			Avg
nedium DS hloride hromium on langanese lercury ilver ite: ocation:		NA Dates n 3/93 1 3/93 1 3/93 1 3/93 1 Poteet Oil Ltd Stephens Co., OK	<0.119<0.904<0.00062710.135	<0.119 <0.904 <0.0006 271		3/93 1/85-3/93	1	Range (mg/L) 1860	1860			Dates			Avg
DS chloride chromium on langanese lercury ilver itte: ocation: tatus:		NA Dates n 3/93 1 3/93 1 3/93 1 3/93 1 3/93 1 Poteet Oil Ltd Stephens Co., OK active	<0.119<0.904<0.00062710.135	<0.119 <0.904 <0.0006 271		3/93 1/85-3/93	1	Range (mg/L) 1860	1860			Dates			Avg
nedium DS hloride hromium on anganese ercury ilver ite: occation: tatus: o. Pits:		Dates n 3/93 1 3/93 1 3/93 1 3/93 1 3/93 1 Poteet Oil Ltd Stephens Co., OK active 8	Range (mg/kg)<0.119<0.904<0.00062710.135	<0.119 <0.904 <0.0006 271		3/93 1/85-3/93	1	Range (mg/L) 1860	1860			Dates			Avg
nedium DS hloride hromium on anganese ercury ilver ite: occation: tatus: o. Pits:		NA Dates n 3/93 1 3/93 1 3/93 1 3/93 1 3/93 1 Poteet Oil Ltd Stephens Co., OK active	Range (mg/kg)<0.119<0.904<0.00062710.135	<0.119 <0.904 <0.0006 271		3/93 1/85-3/93	1	Range (mg/L) 1860	1860			Dates			Avg
DS hloride hromium on anganese ercury liver lite: ocation: latus: o. Pits: rea:		Dates n 3/93 1 3/93 1 3/93 1 3/93 1 3/93 1 Poteet Oil Ltd Stephens Co., OK active 8	Range (mg/kg) <0.119 <0.904 <0.0006 271 0.135	<0.119 <0.904 <0.0006 271		3/93 1/85-3/93	1	Range (mg/L) 1860 972-2,274	1860			Dates	n	Range (mg/L)	Avg
DS hloride hromium on anganese lercury lite: coation: tatus: o. Pits: rea:		Dates n 3/93 1 3/93 1 3/93 1 3/93 1 3/93 1 Poteet Oil Ltd Stephens Co., OK active 8 9.4 acres (411,000	Range (mg/kg) <0.119 <0.904 <0.0006 271 0.135 ft²) Pit Sludge	<0.119 <0.904 <0.0006 271 0.135		3/93 1/85-3/93	1 2	Range (mg/L) 1860 972-2,274	1860 1,623				n	Range (mg/L)	
DS hloride hromium on anganese tercury ilite: cocation: tatus: 0. Pits: rea:		Dates n 3/93 1 3/93 1 3/93 1 3/93 1 3/93 1 Poteet Oil Ltd Stephens Co., OK active 8	Range (mg/kg) <0.119 <0.904 <0.0006 271 0.135	<0.119 <0.904 <0.0006 271		3/93 1/85-3/93 Dates	1 2	Range (mg/L) 1860 972-2,274 Pit Water Range (mg/L)	1860 1,623			Dates	n Gr n	Range (mg/L) oundwater Range (mg/L)	Ave
DS hloride hromium on anganese lercury iiver iite: ocation: tatus: o. Pits: rea:		Dates n 3/93 1 3/93 1 3/93 1 3/93 1 3/93 1 7-Oteet Oil Ltd Stephens Co., OK active 8 9.4 acres (411,000	Range (mg/kg) <0.119 <0.904 <0.0006 271 0.135 ft²) Pit Sludge	<0.119 <0.904 <0.0006 271 0.135		3/93 1/85-3/93 Dates 1/96-3/00	1 2 n 32	Range (mg/L) 1860 972-2,274 Pit Water Range (mg/L) 7.26-8.77	1860 1,623 Avg 7,93				n	Range (mg/L)	Ave
bedium DS hloride hromium on anganese ercury iiver ite: o. Pits: rea: edium H rsenic		Dates n 3/93 1 3/93 1 3/93 1 3/93 1 3/93 1 7-Oteet Oil Ltd Stephens Co., OK active 8 9.4 acres (411,000	Range (mg/kg) <0.119 <0.904 <0.0006 271 0.135 ft²) Pit Sludge	<0.119 <0.904 <0.0006 271 0.135		3/93 1/85-3/93 Dates 1/96-3/00 3/00	1 2 n 32 2	Range (mg/L) 1860 972-2,274 Pit Water Range (mg/L) 7.26-8.77 u-0.032	1860 1,623 Avg 7,93 0.016			Dates	n Gr n	Range (mg/L) oundwater Range (mg/L)	Ąv
dedium DS hloride hromium on langanese lercury ilite: cocation: tatus: lo. Pits: rea: tedium H rsenic arium		Dates n 3/93 1 3/93 1 3/93 1 3/93 1 3/93 1 7-Oteet Oil Ltd Stephens Co., OK active 8 9.4 acres (411,000	Range (mg/kg) <0.119 <0.904 <0.0006 271 0.135 ft²) Pit Sludge	<0.119 <0.904 <0.0006 271 0.135		3/93 1/85-3/93 Dates 1/96-3/00 3/00 3/00	1 2 n 32 2 1	Pit Water Range (mg/L) 972-2,274 Pit Water Range (mg/L) 7.26-8.77 u-0.032 u	Avg 7.93 0.016			Dates	n Gr n	Range (mg/L) oundwater Range (mg/L)	Ave
fedium DS Shloride Fromium on flanganese fercury silver socation: status: lo. Pits: rea: fedium H rsenic rsenic rsenic radium admium		Dates n 3/93 1 3/93 1 3/93 1 3/93 1 3/93 1 7-Oteet Oil Ltd Stephens Co., OK active 8 9.4 acres (411,000	Range (mg/kg) <0.119 <0.904 <0.0006 271 0.135 ft²) Pit Sludge	<0.119 <0.904 <0.0006 271 0.135		3/93 1/85-3/93 Dates 1/96-3/00 3/00 3/00 3/00	1 2 3 3 2 1 2	Pit Water Range (mg/L) 972-2,274 Pit Water Range (mg/L) 7.26-8.77 u-0.032 u	Avg 7.93 0.016 u 1.82		9/4	Dates 95-12/99	Gr n 30	oundwater Range (mg/L) 6.9-8.28	Avg 7.42
Aledium TDS Chloride Chromium Ton Aanganese Aercury Silte: Ocation: Status: Io. Pits: Area: Aledium OH Arsenic Sarium Cadmium Chloride		Dates n 3/93 1 3/93 1 3/93 1 3/93 1 3/93 1 7-Oteet Oil Ltd Stephens Co., OK active 8 9.4 acres (411,000	Range (mg/kg) <0.119 <0.904 <0.0006 271 0.135 ft²) Pit Sludge	<0.119 <0.904 <0.0006 271 0.135		3/93 1/85-3/93 1/85-3/93 Dates 1/96-3/00 3/00 3/00 9/95-3/00	1 2 n 32 2 1 2 40	Pit Water Range (mg/L) 1860 972-2,274 Pit Water Range (mg/L) 7.26-8.77 u-0.032 u-3.64 292-4,900	Avg 7.93 0.016 u 1.82 1,062		9/4	Dates	n Gr n	Range (mg/L) oundwater Range (mg/L)	Avg 7.42
Medium TDS Chloride Chromium ron Manganese Mercury Silver Silver Silver Silver Medium DH Arsenic Barium Badmium Chloride Chromium		Dates n 3/93 1 3/93 1 3/93 1 3/93 1 3/93 1 7-Oteet Oil Ltd Stephens Co., OK active 8 9.4 acres (411,000	Range (mg/kg) <0.119 <0.904 <0.0006 271 0.135 ft²) Pit Sludge	<0.119 <0.904 <0.0006 271 0.135		3/93 1/85-3/93 1/85-3/93 Dates 1/96-3/00 3/00 3/00 3/00 3/00 3/00 3/00	1 2 3 3 1 2 40 1	Pit Water Range (mg/L) 	Avg 7.93 0.016 u 1.82 1,062 u		9/4	Dates 95-12/99	Gr n 30	oundwater Range (mg/L) 6.9-8.28	Avg 7.42
Aledium DS Chloride Chromium on Anganese Aercury Silver Site: Ocation: Status: Io. Pits: Larea: Aledium H Larsenic Larium Cadmium Chloride Chromium COC		Dates n 3/93 1 3/93 1 3/93 1 3/93 1 3/93 1 7-Oteet Oil Ltd Stephens Co., OK active 8 9.4 acres (411,000	Range (mg/kg) <0.119 <0.904 <0.0006 271 0.135 ft²) Pit Sludge Range (mg/kg)	<0.119 <0.904 <0.0006 271 0.135		3/93 1/85-3/93 1/85-3/93 Dates 1/96-3/00 3/00 3/00 9/95-3/00	1 2 n 32 2 1 2 40	Pit Water Range (mg/L) 1860 972-2,274 Pit Water Range (mg/L) 7.26-8.77 u-0.032 u-3.64 292-4,900	Avg 7.93 0.016 u 1.82 1,062		9/4	Dates 95-12/99	Gr n 30	oundwater Range (mg/L) 6.9-8.28	Avg 7.42
Medium TDS Chloride Chromium ron Manganese Mercury Silte: .ocation: Status: No. Pits: Area: Medium OH Arsenic Barium Cadmium Chloride		Dates n 3/93 1 3/93 1 3/93 1 3/93 1 3/93 1 7-Oteet Oil Ltd Stephens Co., OK active 8 9.4 acres (411,000	Range (mg/kg) <0.119 <0.904 <0.0006 271 0.135 ft²) Pit Sludge	<0.119 <0.904 <0.0006 271 0.135		3/93 1/85-3/93 1/85-3/93 Dates 1/96-3/00 3/00 3/00 3/00 3/00 3/00 3/00	1 2 3 3 1 2 40 1	Pit Water Range (mg/L) 7.26-2,274 Pit Water Range (mg/L) 7.26-8.77 u-0.032 u u-3.64 292-4,900 u	Avg 7.93 0.016 u 1.82 1,062 u		9/4	Dates 95-12/99	Gr n 30	oundwater Range (mg/L) 6.9-8.28	Avg 7.42

Site:		Ricketts												
ocation:	- 1	Love Co., OK												
Status:	i	inactive												
lo. Pits:		NA												
rea:		NA												
A and the con-				D'u Olaska i									*	
/ledium				Pit Sludge					Pit Water				Groundwater	
		Dates	n	Range (mg/kg)	Avg		Dates	n	Range (mg/L)	Avg		Dates	n Range (mg/L)	Avg
DS							12/95	2	70-75	73				
Chloride							12/95	3	6-325	113				
/lagnesium						100	12/95	. 3	4-273	94				
g.,oo.a.,,							12/30		4-215	34				
lite:		S&M												
ocation:		Garvin Co., O	K			,								
status:	a	abandoned												
lo. Pits:	Ē	6											·	
rea:		1.6 acres (70,	500 ft	²)										
				•										
ledium				Pit Sludge					Pit Water				O :	
Jaium		D-4								4.	200	_	Groundwater	
		Dates	n	Range (mg/kg)	Avg		Dates	n	Range (mg/L)	Avg		Dates	n Range (mg/L)	Avg
rsenic		12/96	1	u `	u		3/96	4	0.005-0.808	0.206				
arium		12/96	1	0.92	0.92		3/96	4	0.31-1.04	0.6				
admium		12/96	1	u	u		3/96	4	<0.002	< 0.002				
hloride							7/83-9/86	6	277-3,000	1,222				
hromium		12/96	1	u.	u		3/96	4	0.023-0.029					
ead										0.1				
		12/96	-1	` u	u		3/96	4	<0.043-<0.43	0.14				
lercury		12/96	1	, u	u		3/96	4	<0.00018-0.004	0.0018				
litrogen							3/96	4	0.05-0.099	0.07				
elenium		12/96	1	u	u		3/96	4	<0.002	< 0.002				
ilver		12/96	1:	u	u		3/96	4	<0.008	<0.008				
inc		12/96	1.	ü.	ū		3/96	4	0.04-0.07					
		12/96								0.05				
enzene			3	u-0.01	u		3/96	4	<0.002	<0.002		9/92	5 <0.002-0.087	0.019
oluene		12/96	3	0.01-0.087	0.05		3/96	4	<0.002	<0.002		9/92	5 <0.002-0.149	0.031
thylbenzene		12/96	3	0.018-0.44	0.17		3/96	4	<0.002	< 0.002		9/92	5 <0.002-0.012	0.004
ylene		12/96	3	0.084-0.869	0.387		3/96	4	<0.002	< 0.002		9/92	5 <0.002-0.108	0.023
PH		12/96											0.002 0.100	0.020
PH		12/96	3	25.5-34	30.4		3/96	4	<1	<1				
OC, SVOC		12/96	1	u			3/96	4						
			•		u		3/90	. 4	u'	u				
Bbls. Rec'd.		1989-99		2.82MM										
ite:	5	Sable Mar							,					
ocation:		Garvin Co., Ol	Κ'											
tatus:	i	nactive												
o. Pits:		18												
rea:		NA.			1.1									
ou.	r	***												
ledium				Pit Sludge					Pit Water				Groundwater	
		Dates	n	Range (mg/kg)	Avg		Dates	n	Range (mg/L)	Avg		Dates	n Range (mg/L)	Avg
Н							2/89-7/94	11	7.44-8.75	8.09		4/86-1/93	6 7.4-8.3	7.9
DS				•			1/91-1/95	2	4,095-5,800	4,948		4/86		
rsenic	•			100								4/00	2 380-440	410
							2/95	1	0.02	0.02				
alcium												4/86	5 34-51	39
hloride							3/89-2/95	12	1,440-3,500	2,439		4/86-1/93	7 2-1,577	58
hromium							2/95	1	0.59	0.59		4/86	5 <0.01-0.01	0.01
										4.5		4/86	5 <0.01-0.1	0.1
ead												4/86	2 13-46	30
odium							4/04 0/0=	•		_		4/86	5 <0.01-0.1	0 .
odium inc							1/91-2/95	2	4-6	5				
odium inc I&G														
odium inc &G enzene							. '					1/93	1 <0.002	<0.002
ead odium inc 0&G enzene oluene							. '					1/93 1/93		
odium inc &G enzene						:	. '							<0.002 <0.002 <0.002

Site: Location: Status:															
Location:															
		Safe Earth		- '.								400			
		Roger Mills Co., OK			19 3										
		active		. 44											
No. Pits:		7													
		2.4 acres (>105,000	ι α 2\			5.4									
Area:		2.4 acres (>105,000	ιπ-)		18 p. 18 18 19 19										
	*														
/ledium			Pit Sludge		100			Pit Water					Gr	oundwater	
		Dates n	Range (mg/kg)	Avg		Dates	n-	Range (mg/L)	. Av	q		Dates	n.	Range (mg/L)	Avg
H .		1/97-1/99 16	7.31-11.28	8.83		1/96-1/00	24	6.71-10.3	7.8			1/96-1/00	102	7.01-8.1	7.53
Cadmium						7/95	1.	1.01	1.0				.02	7.01-0.1	1.00
Chloride		1/97-1/99 19	2,220-35,900	11,630		1/95	37	1,140-159,000				40/00 4/00	400	7.00.004	
				11,030		1/95	3/	1,140-159,000	20,0	33		10/93-1/00	132	7.63-261	41
Bbls. Rec'd		1995-98	>850,000												
	<u> </u>				·										
ite:		Samples													
ocation:		Canadian Co., OK												."	
tatus:		active		1											
lo. Pits:		5													
rea:		6.0 acres (262,725)	† ²)												
		0.0 00.00 (202).20	. ,												
4			Dir Otasia					D. 14.							
ledium		4	Pit Sludge	100				Pit Water					Gr	oundwater	
		Dates n	Range (mg/kg)	Avg	100	Dates	n -	Range (mg/L)	Av	g		Dates	n	Range (mg/L)	Avg
Н						4/81-2/83	3	7.2-7.7	7.4			3/83	3	6.5-9.3	7.7
DS						2/83	1	2,429	2.4	29					
rsenic				100		9/81-2/83	5	<0.01-<0.02	<0.			3/83	4	<0.01-<0.1	<0.1
arium						9/81-2/83	7	0.48-13.59							
									3.3			3/83-6/83	. 6	0.15-6.64	1.5
oron						9/81	1 -	0.68	0.6						
admium						5/81-2/83	5	0.003-<0.02	<0.	02		·			
hloride		6/93-8/93 4	<1000-15,504	5,151		4/81-12/95	24	273-6,767	2,1	25		3/83-4/92	13	22-2,847	912
hromium					1.54	9/81-2/83	8	0.287-0.86	0.5	6 .		3/83-6/83	6	<0.1-0.11	<0.1
ead						9/81	3	<0.02-0.029	<0.			3/83	4	<0.2	<0.2
lagnesium						2/83	1	7,589	7,5			3/03	4	~0.2	~0.2
lercury					1.0	9/81	3	,0.0005-<0.005	<0.0						
inc						2/83	2	<0.04	<0.)4		3/83	2	<0.04-2.39	1.2
enzene	*,	6/93-8/93 4	<0.008-<0.333	0.09								9/92	3	<0.002	<0.002
oluene		6/93-8/93 4	<0.008-26.4	6.6								9/92	3	<0.002	<0.002
thylbenzene		6/93-8/93 4	<0.08-12.2	3.1								9/92	3	<0.002	<0.002
(ylene		6/93-8/93 4	<0.008-114	28								9/92	3		
PH		3/83 4	3.35-4,170	1,048										<0.002	<0.002
rn		3/03 4	3.35-4,170	1,048					1000			3/83	4	<0.1	<0.1
 						<u> </u>		<u> </u>							
ite:		Scott, J.													
ocation:		Canadian Co., OK													
tatus:		active													
o. Pits:		3													
rea:		9.8 acres (427,000 f	÷2\		. "			e e e							
ioa.		0.0 00100 (421,000 1	• /		120										
						1			.*						
ledium			Pit Sludge					Pit Water					Gr	oundwater	
		Dates n	Range (mg/kg)	Avg		Dates	n	Range (mg/L)	: Av	g		Dates	n	Range (mg/L)	Avg
н						9/95-1/00	6	7.8-8.5	8.			7/97-1/00	20	7.3-8.2	7.8
DS ¹				100		9/95-1/00	6	2,071-17,505	9.6			7/97-1/00	20	1,423-7,719	3,300
onductivity (μ)						9/95-1/00	6	2,410-23,900	13,7						
												7/97-1/00	20	1,750-8,530	3,782
carbonate						9/95-1/00	6	222-681	39			7/97-1/00	20	66-559	293
oron						9/95-1/00	6	0.52-6.87	2.6			7/97-1/00	20	0.42-8.15	3
					1.9	9/95-1/00	6	145-598	. 30	1		7/97-1/00	20	154-636	348
						9/95-1/00	6	0-12	2			7/97-1/00	20	0	. 0
						9/95-1/00	- 6	64-7,299	4.0	76	100	7/97-1/00	20	47-1,587	244
arbonate		the second second				9/95-1/00	6	19-179	77			7/97-1/00	20	75-174	99
arbonate nloride						9/95-1/00	6	0							
arbonate hloride agnesium					44				. 0			7/97-1/00	. 20	0-12	2.8
arbonate nloride agnesium trogen						9/95-1/00	6	19-166	66			7/97-1/00	20	0-14	4.8
arbonate hloride lagnesium itrogen otassium									3.1	1.4					
arbonate hloride agnesium itrogen otassium odium						9/95-1/00	6	252-6,029				7/97-1/00	20	132-1,913	531
arbonate hloride lagnesium itrogen otassium odium						9/95-1/00 9/95-1/00	6 6	1,023-2,963	1,6			7/97-1/00 7/97-1/00	20 20	132-1,913 615-4,833	531 1,799
arbonate hloride agnesium itrogen otassium odium ulfate						9/95-1/00	6	1,023-2,963	1,6	38					
arbonate hloride lagnesium itrogen otassium odium ulfate enzene						9/95-1/00 12/97	6 1	1,023-2,963 <0.0005	1,6 <0.0	38 005					
alcium arbonate hloride lagnesium itrogen otassium odium ulfate enzene oluene						9/95-1/00 12/97 12/97	6 1 1	1,023-2,963 <0.0005 <0.0005	1,6 <0.0 <0.0	38 005 005					
arbonate hloride lagnesium itrogen otassium odium ulfate enzene oluene thylbenzene						9/95-1/00 12/97 12/97 12/97	6 1 1	1,023-2,963 <0.0005 <0.0005 <0.0005	1,6 <0.0 <0.0 <0.0	38 005 005 005					
arbonate hloride lagnesium itrogen otassium odium ulfate enzene oluene thylbenzene						9/95-1/00 12/97 12/97 12/97 12/97	6 1 1 1	1,023-2,963 <0.0005 <0.0005 <0.0005 <0.0005	1,6 <0.0 <0.0 <0.0 <0.0	38 005 005 005 005					
arbonate hloride lagnesium itrogen otassium odium ulfate enzene						9/95-1/00 12/97 12/97 12/97	6 1 1	1,023-2,963 <0.0005 <0.0005 <0.0005	1,6 <0.0 <0.0 <0.0	38 005 005 005 005					

Calcium Carbonate Carbonate Chloride Magnesium Nitrogen Potassium Sodium Sodium Sulfate Benzene Toluene Ethylbenzene TPH Bbls. Rec'd	Site: Location: Status: No. Pits: Area: Medium PH TDS Conductivity (µ) Bicarbonate Boron	Site: Location: Status: No. Pits: Area: Medium pH Arsenic Barium Chloride Chromium Silver O&G Bbis: Rec'd	Site: Location: Status: No. Pits: Area: Medium Chloride	Medium TDS Arsenic Barium Cadmium Chloride Iron Lead Magnesium Manganese Mercury Silver	Site: Location: Status: No. Pits: Area:
1992-99 >934,927	Southard Blaine Co., OK active 6 >4.0 acres (>175,000 ft*) Pit Sludge Dates n Range (mg/kg)	Smith, G. Love Co., OK active 1 0.5 acres (22.500 ft²) Pit Sludge Dates n Range (mg/kg)	Shiflett Comanche Co., OK Inactive 1 2.0 acres (85,000 ft²) Pit Sludge Dates n Range (mg/kg)	Pit Sludge Dates n Range (mg/kg)	Scott, L. Love Co., OK inactive 2 4.0 acres (172,500 ft²)
	Avg	W	Avg) , 6	
2/91 2/91 2/91-7/00 2/91 2/91 2/91 2/91 2/91 2/91 2/91 2/91	Dates 2/91-7/00 2/91 2/91 2/91	Dates 2/91-1/00 1/89-1/00	Dates 11/82	Dates 5/95 5/95 5/95 5/95 5/95 5/95 5/95 5/9	
1 602 1 0 37 340-25,300 1 69 1 221 1 1,585 1 40,0005 1 40,0005 1 40,0005 1 40,0005	Pit Water (mg/L) n Range (mg/L) 24 5.36-8.8 1 2,991 1 4,800 1 174	Pit Water n Range (mg/L) 18 7.04-10.29 52 550-2.625	Pit Water n Range (mg/L) 1 3000	Pit Water n Range (mg/L) 523 1 <0.005 1 <0.001 1 <0.001 1 <0.001 1 <0.001 1 <0.002 1 0.74 1 <0.002 1 98 1 <0.002 1 12 1 0.08	
602 0 16.207 69 221 1,585 -0.0005 -0.0005 -0.0005 -0.0005	Avg 7.55 2.991 4.600	Avg 8.8	Avg 3000	Avg 523 40,005 40,001 40,001 60,001 984 0,74 98 40,002 98 40,002 1,2	
2/91-7/00 2/91 2/91 2/91 2/91 2/91 2/92 2/92 2/92 2/92 2/92	Gr Dates 291-7/00 291 291 299 299	Dates 190-1/00 9/92 9/92 1/90-1/00 9/92 9/92	D _{ates}	Dales	
70 608-13,100 1 372 1 82 1 1,902 1 0,002-0,014 3 <0,002-0,014 3 <0,002 3 <0,002 3 <0,002 3 <0,002 3 <0,002 3 <0,002 3 <0,002 3 <0,002 3 <0,002	Groundwater n Range (mg/L) 00 67 6.81-7.84 1 4.319 1 6.600 1 860 1 860	Groundwater n Range (mg/L) 77 5.8-8.72 3 <0.002 3 <0.002 3 <0.002 3 <0.002 3 <0.002 3 <0.002	Groundwater n Range (mg/L)	Groundwater n Range (mg/L)	
	Avg 7.19 4.319 6,600 860	Avg 7.33 40.002 40.002 40.002 40.002 40.002 40.002	Ayg	,	

Site:	٥.	uttles															
			,														
Location:		arter Co., Oh	ζ.														
Status:	ab	andoned															
No. Pits:	2																
Area:	51	.7 acres (2.	.25 m	illion ft ²)													
				•						1							
Medium				Pit Sludge			100			Pit Water				_			
Wediam								21.0							roundwater		
		Dates	n	Range (mg/kg)	Avg			Dates	n	Range (mg/L)	Avg		Dates	n	Range (mg/L)	Avg	
Arsenic		7/97	6	<0.03	<0.03										and the second		
Barium	1	7/97	6	0.32-4.81	1.67												
Cadmium		7/97	6	<0.005	< 0.005												
Chloride		8/86-7/97	6	20-2,686	807											5	
Chromium		7/97	6	<0.005-0.18	0.037												
Lead		7/97	- 6	<0.03-0.59	0.17												
Mercury		7/97	6	<0.0005	<0.0005												
Selenium		7/97	6	<0.04	<0.04												
Silver		7/97	6	<0.01	<0.01												
Zinc		7/97	. 6	<0.05-1.78	0.48												
Benzene		7/97	6	<0.001-0.224	0.05												
Toluene		7/97	6	<0.001-0.345	0.07												
								1.5									
Ethylbenzene		7/97	6	<0.001-0.25	0.07												
Xylene		7/97	6	<0.001-1.1	0.36												
TPH		7/97	6														
TPH		7/97	6	<0.001-1.01	0.32												
VOC, SVOC		7/97	6	· u	u.												
Herb, Pest		7/97	6.	u	ù			* -		and the second			100				
Site:	T	& S							-			-	 				-
Location:		Clain Co.,	OK														
Status:			OK														
		tive															
No. Pits:	2			a.9.													
Area:	4.	1 acres (178	5,500	π-)											•		
Medium				Pit Sludge						Pit Water				G	roundwater		
	. *	Dates	n	Range (mg/kg)	Avg			Dates	n	Range (mg/L)	Avg		Dates	n ·	Range (mg/L)	Avg	
pH		1/00	1	10.91									12/96-1/00	7 -	10.42-12.8	12.2	
TDS													12/96-7/97	3	2,343-10,296	6,064	
														0			
													10/00 7/07	•			
Conductivity (µ)						4.0							12/96-7/97	3	3,550=15,600	9,033	
Conductivity (μ) Bicarbonate													12/96-1/00	3	3,550=15,600 0	9,033 0	
Conductivity (µ) Bicarbonate Boron					. 4										3,550=15,600	9,033	
Conductivity (μ) Bicarbonate					. "	***							12/96-1/00	3	3,550=15,600 0	9,033 0	
Conductivity (µ) Bicarbonate Boron					. '								12/96-1/00 12/96-7/97 12/96-7/97	3 3 3	3,550=15,600 0 0.26-2.28 140-462	9,033 0 1 294	
Conductivity (μ) Bicarbonate Boron Calcium		2/98-1/00	2	2,000-7,050	4,525								12/96-1/00 12/96-7/97 12/96-7/97 12/96-1/00	3 3 3	3,550=15,600 0 0.26-2.28 140-462 744-4,344	9,033 0 1 294 1,993	
Conductivity (µ) Bicarbonate Boron Calcium Carbonate Chloride	2	2/98-1/00	2	2,000-7,050	4,525								12/96-1/00 12/96-7/97 12/96-7/97 12/96-1/00 12/96-1/00	3 3 3 3 12	3,550=15,600 0 0.26-2.28 140-462 744-4,344 u-3,320	9,033 0 1 294 1,993 971	
Conductivity (µ) Bicarbonate Boron Calcium Carbonate Chloride Magnesium	2	2/98-1/00	2	2,000-7,050	4,525								12/96-1/00 12/96-7/97 12/96-7/97 12/96-1/00 12/96-1/00 12/96-1/00	3 3 3 12 3	3,550=15,600 0 0.26-2.28 140-462 744-4,344 u-3,320 1-8	9,033 0 1 294 1,993 971 3	
Conductivity (µ) Bicarbonate Boron Calcium Carbonate Chloride Magnesium Nitrogen	. 2	2/98-1/00	2	2,000-7,050	4,525								12/96-1/00 12/96-7/97 12/96-7/97 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00	3 3 3 12 3 3	3,550=15,600 0 0.26-2.28 140-462 744-4,344 u-3,320 1-8 1-5	9,033 0 1 294 1,993 971 3	
Conductivity (µ) Bicarbonate Boron Calcium Carbonate Chloride Magnesium Nitrogen Potassium		2/98-1/00	2	2,000-7,050	4,525								12/96-1/00 12/96-7/97 12/96-7/97 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00	3 3 3 12 3 3 3	3,550=15,600 0 0.26-2.28 140-462 744-4,344 u-3,320 1-8 1-5 107-1,025	9,033 0 1 294 1,993 971 3 3 640	
Conductivity (µ) Bicarbonate Boron Calcium Carbonate Chloride Magnesium Nitrogen Potassium Sodium		2/98-1/00	2	2,000-7,050	4,525								12/96-1/00 12/96-7/97 12/96-7/97 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00	3 3 3 12 3 3 3 3	3,550=15,600 0 0.26-2.28 140-462 744-4,344 u-3,320 1-8 1-5 107-1,025 199-948	9,033 0 1 294 1,993 971 3 3 640 568	
Conductivity (µ) Bicarbonate Boron Calcium Carbonate Chloride Magnesium Nitrogen Potassium Sodium Sulfate	2	2/98-1/00	2	2,000-7,050	4,525								12/96-1/00 12/96-7/97 12/96-7/97 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00	3 3 3 12 3 3 3	3,550=15,600 0 0.26-2.28 140-462 744-4,344 u-3,320 1-8 1-5 107-1,025	9,033 0 1 294 1,993 971 3 3 640	
Conductivity (µ) Bicarbonate Boron Calcium Carbonate Chloride Magnesium Nitrogen Potassium Sodium Sulfate Benzene		2/98-1/00	2	2,000-7,050	4,525			12/97-6/98	2	0.0009-<0.01	<0.01		12/96-1/00 12/96-7/97 12/96-7/97 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00	3 3 3 12 3 3 3 3	3,550=15,600 0 0.26-2.28 140-462 744-4,344 u-3,320 1-8 1-5 107-1,025 199-948	9,033 0 1 294 1,993 971 3 3 640 568	
Conductivity (µ) Bicarbonate Boron Calcium Carbonate Chloride Magnesium Nitrogen Potassium Sodium Sulfate		2/98-1/00	2	2,000-7,050	4,525			12/97-6/98 12/97-6/98	2 2	0.0009-<0.01 0.0012-<0.01	<0.01 <0.01		12/96-1/00 12/96-7/97 12/96-7/97 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00	3 3 3 12 3 3 3 3	3,550=15,600 0 0.26-2.28 140-462 744-4,344 u-3,320 1-8 1-5 107-1,025 199-948	9,033 0 1 294 1,993 971 3 3 640 568	
Conductivity (µ) Bicarbonate Boron Calcium Carbonate Chloride Magnesium Nitrogen Potassium Sodium Sulfate Benzene		2/98-1/00	2	2,000-7,050	4,525						<0.01		12/96-1/00 12/96-7/97 12/96-7/97 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00	3 3 3 12 3 3 3 3	3,550=15,600 0 0.26-2.28 140-462 744-4,344 u-3,320 1-8 1-5 107-1,025 199-948	9,033 0 1 294 1,993 971 3 3 640 568	
Conductivity (µ) Bicarbonate Boron Calcium Carbonate Chloride Magnesium Nitrogen Potassium Sodium Sulfate Benzene Toluene Ethylbenzene		2/98-1/00	2	2,000-7,050	4,525			12/97-6/98 12/97-6/98	2 2	0.0012-<0.01 <0.0002-<0.01	<0.01 <0.01		12/96-1/00 12/96-7/97 12/96-7/97 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00	3 3 3 12 3 3 3 3	3,550=15,600 0 0.26-2.28 140-462 744-4,344 u-3,320 1-8 1-5 107-1,025 199-948	9,033 0 1 294 1,993 971 3 3 640 568	
Conductivity (µ) Bicarbonate Boron Calcium Carbonate Chloride Magnesium Nitrogen Potassium Sodium Sulfate Benzene Toluene Ethylbenzene Xylene		2/98-1/00	2	2,000-7,050	4,525			12/97-6/98 12/97-6/98 12/97-6/98	2 2 2	0.0012-<0.01 <0.0002-<0.01 0.002-<0.01	<0.01 <0.01 <0.01		12/96-1/00 12/96-7/97 12/96-7/97 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00	3 3 3 12 3 3 3 3	3,550=15,600 0 0.26-2.28 140-462 744-4,344 u-3,320 1-8 1-5 107-1,025 199-948	9,033 0 1 294 1,993 971 3 3 640 568	
Conductivity (µ) Bicarbonate Boron Calcium Carbonate Chloride Magnesium Nitrogen Potassium Sodium Sulfate Benzene Toluene Ethylbenzene Xylene TPH			2		4,525			12/97-6/98 12/97-6/98	2 2	0.0012-<0.01 <0.0002-<0.01	<0.01 <0.01		12/96-1/00 12/96-7/97 12/96-7/97 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00	3 3 3 12 3 3 3 3	3,550=15,600 0 0.26-2.28 140-462 744-4,344 u-3,320 1-8 1-5 107-1,025 199-948	9,033 0 1 294 1,993 971 3 3 640 568	
Conductivity (µ) Bicarbonate Boron Calcium Carbonate Chloride Magnesium Nitrogen Potassium Sodium Sulfate Benzene Toluene Ethylbenzene Xylene		988-1998	2	2,000-7,050 6.69MM	4,525			12/97-6/98 12/97-6/98 12/97-6/98	2 2 2	0.0012-<0.01 <0.0002-<0.01 0.002-<0.01	<0.01 <0.01 <0.01		12/96-1/00 12/96-7/97 12/96-7/97 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00	3 3 3 12 3 3 3 3	3,550=15,600 0 0.26-2.28 140-462 744-4,344 u-3,320 1-8 1-5 107-1,025 199-948	9,033 0 1 294 1,993 971 3 3 640 568	
Conductivity (µ) Bicarbonate Boron Calcium Carbonate Chloride Magnesium Nitrogen Potassium Sodium Sulfate Benzene Toluene Ethylbenzene Xylene TPH Bbls Rec'd	1	988-1998			4,525			12/97-6/98 12/97-6/98 12/97-6/98	2 2 2	0.0012-<0.01 <0.0002-<0.01 0.002-<0.01	<0.01 <0.01 <0.01		12/96-1/00 12/96-7/97 12/96-7/97 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00	3 3 3 12 3 3 3 3	3,550=15,600 0 0.26-2.28 140-462 744-4,344 u-3,320 1-8 1-5 107-1,025 199-948	9,033 0 1 294 1,993 971 3 3 640 568	
Conductivity (µ) Bicarbonate Boron Calcium Carbonate Chloride Magnesium Nitrogen Potassium Sodium Sulfate Benzene Toluene Ethylbenzene Xylene TPH Bbls Rec'd	1 Ta	988-1998 sh/Chitwooc	d		4,525			12/97-6/98 12/97-6/98 12/97-6/98	2 2 2	0.0012-<0.01 <0.0002-<0.01 0.002-<0.01	<0.01 <0.01 <0.01		12/96-1/00 12/96-7/97 12/96-7/97 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00	3 3 3 12 3 3 3 3	3,550=15,600 0 0.26-2.28 140-462 744-4,344 u-3,320 1-8 1-5 107-1,025 199-948	9,033 0 1 294 1,993 971 3 3 640 568	_
Conductivity (µ) Bicarbonate Boron Calcium Carbonate Chloride Magnesium Nitrogen Potassium Sodium Sodium Sulfate Benzene Toluene Ethylbenzene Xylene TPH Bbls Rec'd Site: Location:	1 Ta Gr	988-1998 ish/Chitwood ady Co., OK	d		4,525			12/97-6/98 12/97-6/98 12/97-6/98	2 2 2	0.0012-<0.01 <0.0002-<0.01 0.002-<0.01	<0.01 <0.01 <0.01		12/96-1/00 12/96-7/97 12/96-7/97 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00	3 3 3 12 3 3 3 3	3,550=15,600 0 0.26-2.28 140-462 744-4,344 u-3,320 1-8 1-5 107-1,025 199-948	9,033 0 1 294 1,993 971 3 3 640 568	
Conductivity (µ) Bicarbonate Boron Calcium Carbonate Chloride Magnesium Nitrogen Potassium Sodium Sulfate Benzene Toluene Ethylbenzene Xylene TPH Bbls Rec'd Site: Location: Status:	1 Ta Gr ina	988-1998 sh/Chitwooc	d		4,525			12/97-6/98 12/97-6/98 12/97-6/98	2 2 2	0.0012-<0.01 <0.0002-<0.01 0.002-<0.01	<0.01 <0.01 <0.01		12/96-1/00 12/96-7/97 12/96-7/97 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00	3 3 3 12 3 3 3 3	3,550=15,600 0 0.26-2.28 140-462 744-4,344 u-3,320 1-8 1-5 107-1,025 199-948	9,033 0 1 294 1,993 971 3 3 640 568	
Conductivity (µ) Bicarbonate Boron Calcium Carbonate Chloride Magnesium Nitrogen Potassium Sodium Sodium Sulfate Benzene Toluene Ethylbenzene Xylene TPH Bbls Rec'd Site: Location:	1 Ta Gr	988-1998 ish/Chitwood ady Co., OK	d		4,525			12/97-6/98 12/97-6/98 12/97-6/98	2 2 2	0.0012-<0.01 <0.0002-<0.01 0.002-<0.01	<0.01 <0.01 <0.01	· · · · · · · · · · · · · · · · · · ·	12/96-1/00 12/96-7/97 12/96-7/97 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00	3 3 3 12 3 3 3 3	3,550=15,600 0 0.26-2.28 140-462 744-4,344 u-3,320 1-8 1-5 107-1,025 199-948	9,033 0 1 294 1,993 971 3 3 640 568	
Conductivity (µ) Bicarbonate Boron Calcium Carbonate Chloride Magnesium Nitrogen Potassium Sodium Sulfate Benzene Toluene Ethylbenzene Xylene TPH Bbls Rec'd Site: Location: Status:	1 Ta Gr ina	988-1998 sh/Chitwood ady Co., OK active	d		4,525			12/97-6/98 12/97-6/98 12/97-6/98	2 2 2	0.0012-<0.01 <0.0002-<0.01 0.002-<0.01	<0.01 <0.01 <0.01		12/96-1/00 12/96-7/97 12/96-7/97 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00	3 3 3 12 3 3 3 3	3,550=15,600 0 0.26-2.28 140-462 744-4,344 u-3,320 1-8 1-5 107-1,025 199-948	9,033 0 1 294 1,993 971 3 3 640 568	
Conductivity (µ) Bicarbonate Boron Calcium Carbonate Chloride Magnesium Nitrogen Potassium Sodium Sulfate Benzene Toluene Ethylbenzene Xylene TPH Bbls Rec'd Site: Location: Status: No. Pits:	1 Ta Gr ina 6	988-1998 sh/Chitwood ady Co., OK active	d		4,525			12/97-6/98 12/97-6/98 12/97-6/98	2 2 2	0.0012-<0.01 <0.0002-<0.01 0.002-<0.01	<0.01 <0.01 <0.01	· · · · · · · · · · · · · · · · · · ·	12/96-1/00 12/96-7/97 12/96-7/97 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00	3 3 3 12 3 3 3 3	3,550=15,600 0 0.26-2.28 140-462 744-4,344 u-3,320 1-8 1-5 107-1,025 199-948	9,033 0 1 294 1,993 971 3 3 640 568	
Conductivity (µ) Bicarbonate Boron Calcium Carbonate Chloride Magnesium Nitrogen Potassium Sodium Sulfate Benzene Toluene Ethylbenzene Xylene TPH Bbls Rec'd Site: Location: Status: No. Pits:	1 Ta Gr ina 6	988-1998 sh/Chitwood ady Co., OK active	d	6.69MM	4,525			12/97-6/98 12/97-6/98 12/97-6/98	2 2 2	0.0012-<0.01 <0.0002-<0.01 0.002-<0.01 <0.00002	<0.01 <0.01 <0.01		12/96-1/00 12/96-7/97 12/96-7/97 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00	3 3 3 12 3 3 3 3 3	3,550=15,600 0 0.26-2.28 140-462 744-4,344 u-3,320 1-8 1-5 107-1,025 199-948 43-2,499	9,033 0 1 294 1,993 971 3 3 640 568	
Conductivity (µ) Bicarbonate Boron Calcium Carbonate Carbonate Magnesium Nitrogen Potassium Sodium Sulfate Benzene Toluene Ethylbenzene Xylene TPH Site: Location: Status: No. Pits: Area:	1 Ta Gr ina 6	988-1998 sh/Chitwood ady Co., OK active	d	6.69MM Pit Sludge				12/97-6/98 12/97-6/98 12/97-6/98 12/97	2 2 2 1	0.0012-<0.01 <0.0002-<0.01 0.002-<0.01 <0.00002	<0.01 <0.01 <0.01 <0.00002		12/96-1/00 12/98-7/97 12/96-7/97 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00	3 3 3 12 3 3 3 3 3 3	3,550=15,600 0 0.26-2.28 140-462 744-4.344 u-3,320 1-8 1-5 107-1,025 199-948 43-2,499	9,033 0 1 294 1,993 971 3 3 640 568 863	
Conductivity (µ) Bicarbonate Boron Calcium Carbonate Chloride Magnesium Nitrogen Potassium Sodium Sulfate Benzene Toluene Ethylbenzene Xylene TPH Bbls Rec'd Site: Location: Status: No. Pits: Area:	1 Ta Gr ina 6	988-1998 sh/Chitwooc ady Co., OK active	d (6.69MM Pit Sludge Range (mg/kg)	Avg			12/97-6/98 12/97-6/98 12/97-6/98 12/97	2 2 2 1	0.0012-<0.01 <0.0002-<0.01 0.002-<0.01 <0.00002 Pit Water Range (mg/L)	<0.01 <0.01 <0.01 <0.00002		12/96-1/00 12/98-7/97 12/96-7/97 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00	3 3 3 12 3 3 3 3 3 3 3	3,550=15,600 0 0.26-2.28 140-462 744-4,344 u-3,320 1-8 1-5 107-1,025 199-948 43-2,499	9,033 0 1 294 1,993 971 3 640 568 863	
Conductivity (µ) Bicarbonate Boron Calcium Carbonate Carbonate Magnesium Nitrogen Potassium Sodium Sulfate Benzene Toluene Ethylbenzene Xylene TPH Site: Location: Status: No. Pits: Area: Medium	1 Ta Gr ina 6	988-1998 sh/Chitwooc ady Co., Ok active Dates 8/89	n 11	6.69MM Pit Sludge Range (mg/kg) 5.8-7.9	Avg 6.8			12/97-6/98 12/97-6/98 12/97-6/98 12/97	2 2 2 1	0.0012-<0.01 <0.0002-<0.01 0.002-<0.01 <0.00002	<0.01 <0.01 <0.01 <0.00002		12/96-1/00 12/98-7/97 12/96-7/97 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00	3 3 3 12 3 3 3 3 3 3 3	3,550=15,600 0 0.26-2.28 140-462 744-4.344 u-3,320 1-8 1-5 107-1,025 199-948 43-2,499	9,033 0 1 294 1,993 971 3 3 640 568 863	
Conductivity (µ) Bicarbonate Boron Calcium Carbonate Chloride Magnesium Nitrogen Potassium Sulfate Benzene Toluene Ethylbenzene Xylene TPH Bbls Rec'd Site: Location: Status: No. Pits: Area: Medium pH TDS	1 Ta Gr ina 6	988-1998 sh/Chitwood ady Co., OK active Dates 8/89 8/89	n 11 11	6.69MM Pit Sludge Range (mg/kg) 5.8-7.9 60.8-4,256	Avg 6.8 1,074			12/97-6/98 12/97-6/98 12/97-6/98 12/97 Dates 9/84-6/93	2 2 2 1	0.0012-<0.01 <0.0002-<0.01 0.002-<0.01 <0.00002 Pit Water Range (mg/L) 6.3-8.6	<0.01 <0.01 <0.01 <0.00002 Avg 7.7		12/96-1/00 12/98-7/97 12/96-7/97 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00	3 3 3 12 3 3 3 3 3 3 3	3,550=15,600 0 0.26-2.28 140-462 744-4,344 u-3,320 1-8 1-5 107-1,025 199-948 43-2,499	9,033 0 1 294 1,993 971 3 640 568 863	
Conductivity (µ) Bicarbonate Boron Calcium Carbonate Chloride Magnesium Nitrogen Potassium Sodium Sulfate Benzene Toluene Ethylbenzene Xylene TPH Bbls Rec'd Site: Location: Status: No. Pits: Area: Medium pH TDS Arsenic	1 Ta Gr ina 6	988-1998 sh/Chitwooc ady Co., Ok active Dates 8/89	n 11	6.69MM Pit Sludge Range (mg/kg) 5.8-7.9	Avg 6.8			12/97-6/98 12/97-6/98 12/97-6/98 12/97 Dates 9/84-6/93	2 2 2 1 1	0.0012-<0.01 <0.0002-<0.01 0.002-<0.01 <0.00002 Pit Water Range (mg/L) 6.3-8.6	<0.01 <0.01 <0.01 <0.00002 Avg 7.7 <0.05		12/96-1/00 12/98-7/97 12/96-7/97 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00	3 3 3 12 3 3 3 3 3 3 3	3,550=15,600 0 0.26-2.28 140-462 744-4,344 u-3,320 1-8 1-5 107-1,025 199-948 43-2,499	9,033 0 1 294 1,993 971 3 640 568 863	
Conductivity (µ) Bicarbonate Boron Calcium Carbonate Carbonate Chloride Magnesium Nitrogen Potassium Sodium Sulfate Benzene Toluene Ethylbenzene Xylene TPH Bbls Rec'd Site: Location: Status: No. Pits: Area: Medium pH TDS Arsenic Calcium	1 Ta Gr ina 6	988-1998 sh/Chitwooc ady Co., OK active Dates 8/89 8/89 8/89	n 11 11 11	6.69MM Pit Sludge Range (mg/kg) 5.8-7.9 60.8-4,256 0.45-1.4	Avg 6.8 1,074 0.99			12/97-6/98 12/97-6/98 12/97-6/98 12/97 Dates 9/84-6/93 9/84	2 2 2 1 1 1 1	0.0012-<0.01 <0.0002-<0.01 0.002-<0.01 <0.00002 Pit Water Range (mg/L) 6.3-8.6 <0.05 137	<0.01 <0.01 <0.01 <0.00002 Avg 7.7 <0.05		12/96-1/00 12/96-7/97 12/96-7/97 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00	3 3 3 12 3 3 3 3 3 3 3	3,550=15,600 0 0.26-2.28 140-462 744-4,344 u-3,320 1-8 1-5 107-1,025 199-948 43-2,499	9,033 0 1 294 1,993 971 3 3 640 568 863	
Conductivity (µ) Bicarbonate Boron Calcium Carbonate Chloride Magnesium Nitrogen Potassium Sodium Sulfate Benzene Toluene Ethylbenzene Xylene TPH Bbls Rec'd Site: Location: Status: No. Pits: Area: Medium pH TDS Arsenic	1 Ta Gr ina 6	988-1998 sh/Chitwood ady Co., OK active Dates 8/89 8/89	n 11 11	6.69MM Pit Sludge Range (mg/kg) 5.8-7.9 60.8-4,256	Avg 6.8 1,074			12/97-6/98 12/97-6/98 12/97-6/98 12/97 Dates 9/84-6/93	2 2 2 1 1	0.0012-<0.01 <0.0002-<0.01 0.002-<0.01 <0.00002 Pit Water Range (mg/L) 6.3-8.6	<0.01 <0.01 <0.01 <0.00002 Avg 7.7 <0.05		12/96-1/00 12/98-7/97 12/96-7/97 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00	3 3 3 12 3 3 3 3 3 3 3	3,550=15,600 0 0.26-2.28 140-462 744-4,344 u-3,320 1-8 1-5 107-1,025 199-948 43-2,499	9,033 0 1 294 1,993 971 3 640 568 863	
Conductivity (µ) Bicarbonate Boron Calcium Carbonate Carbonate Chloride Magnesium Nitrogen Potassium Sodium Sulfate Benzene Toluene Ethylbenzene Xylene TPH Bbls Rec'd Site: Location: Status: No. Pits: Area: Medium pH TDS Arsenic Calcium	1 Ta Gr ina 6	988-1998 sh/Chitwooc ady Co., OK active Dates 8/89 8/89 8/89	n 11 11 11	6.69MM Pit Sludge Range (mg/kg) 5.8-7.9 60.8-4,256 0.45-1.4	Avg 6.8 1,074 0.99			12/97-6/98 12/97-6/98 12/97-6/98 12/97 Dates 9/84-6/93 9/84	2 2 2 1 1 1 1	0.0012-<0.01 <0.0002-<0.01 0.002-<0.01 <0.00002 Pit Water Range (mg/L) 6.3-8.6 <0.05 137 10.1-5,548	<0.01 <0.01 <0.01 <0.00002 Avg 7.7 <0.05 137 1,404		12/96-1/00 12/96-7/97 12/96-7/97 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00	3 3 3 12 3 3 3 3 3 3 3	3,550=15,600 0 0.26-2.28 140-462 744-4,344 u-3,320 1-8 1-5 107-1,025 199-948 43-2,499	9,033 0 1 294 1,993 971 3 3 640 568 863	
Conductivity (µ) Bicarbonate Boron Calcium Carbonate Corbonate Chloride Magnesium Nitrogen Potassium Sodium Sulfate Benzene Toluene Ethylbenzene Xylene TPH Bbls Rec'd Site: Location: Status: No. Pits: Area: Medium pH TDS Arsenic Calcium Chloride	1 Ta Gr ina 6	988-1998 sh/Chitwooc ady Co., OK active Dates 8/89 8/89 8/89 8/89	n 11 11 11	6.69MM Pit Sludge Range (mg/kg) 5.8-7.9 60.8-4,256 0.45-1.4 24.3-6,654	Avg 6.8 1,074 0.99			12/97-6/98 12/97-6/98 12/97-6/98 12/97 Dates 9/84-6/93 9/84 9/84-9/93 9/84	2 2 2 2 1 1 1 34 1 1 35 1	0.0012-<0.01 <0.0002-<0.01 0.002-<0.01 <0.00002 Pit Water Range (mg/L) 6.3-8.6 <0.05 137 10.1-5,548 1.45	<0.01 <0.01 <0.001 <0.00002 Avg 7.7 <0.05 137 1,404		12/96-1/00 12/96-7/97 12/96-7/97 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00	3 3 3 12 3 3 3 3 3 3 3	3,550=15,600 0 0.26-2.28 140-462 744-4,344 u-3,320 1-8 1-5 107-1,025 199-948 43-2,499	9,033 0 1 294 1,993 971 3 3 640 568 863	
Conductivity (µ) Bicarbonate Boron Calcium Carbonate Chloride Magnesium Nitrogen Potassium Sodium Sulfate Benzene Toluene Ethylbenzene Xylene TPH Bbls Rec'd Site: Location: Status: No. Pits: Area: Medium pH TDS Arsenic Calcium Chloride Chromium Lead	1 Ta Gr ina 6	988-1998 sh/Chitwooc ady Co., OK active Dates 8/89 8/89 8/89 8/89	n 11 11 11	6.69MM Pit Sludge Range (mg/kg) 5.8-7.9 60.8-4,256 0.45-1.4 24.3-6,654	Avg 6.8 1,074 0.99			12/97-6/98 12/97-6/98 12/97-6/98 12/97 Dates 9/84-6/93 9/84 9/84-6/93 9/84 9/84	2 2 2 1 1 n 34 1 1 35 1 1	0.0012-<0.01 <0.0002-<0.01 0.002-<0.01 <0.00002 Pit Water Range (mg/L) 6.3-8.6 <0.05 137 10.1-5,548 1.45 <0.1	<pre>Avg 7.7 <0.05 137 1,404 1.45 <0.01</pre>		12/96-1/00 12/96-7/97 12/96-7/97 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00	3 3 3 12 3 3 3 3 3 3 3	3,550=15,600 0 0.26-2.28 140-462 744-4,344 u-3,320 1-8 1-5 107-1,025 199-948 43-2,499	9,033 0 1 294 1,993 971 3 3 640 568 863	
Conductivity (µ) Bicarbonate Boron Calcium Carbonate Carbonate Chloride Magnesium Nitrogen Potassium Sulfate Benzene Toluene Ethylbenzene Xylene TPH Site: Location: Status: No. Pits: Area: Medium PH TDS Arsenic Calcium Chloride Chromium Lead Potassium	1 Ta Gr ina 6	988-1998 sh/Chitwooc ady Co., OK active Dates 8/89 8/89 8/89 8/89	n 11 11 11	6.69MM Pit Sludge Range (mg/kg) 5.8-7.9 60.8-4,256 0.45-1.4 24.3-6,654	Avg 6.8 1,074 0.99			12/97-6/98 12/97-6/98 12/97-6/98 12/97 Dates 9/84-6/93 9/84 9/84-6/93 9/84 9/84 9/84	2 2 2 1 1 34 1 1 35 1 1	0.0012-<0.01 <0.0002-<0.01 0.002-<0.01 <0.00002 Pit Water Range (mg/L) 6.3-8.6 <0.05 137 10.1-5,548 1.45 <0.1 159.5	<pre><0.01 <0.01 <0.01 <0.00002 Avg 7.7 <0.05 137 1,404 1.45 <0.1 159.5</pre>		12/96-1/00 12/96-7/97 12/96-7/97 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00	3 3 3 12 3 3 3 3 3 3 3	3,550=15,600 0 0.26-2.28 140-462 744-4,344 u-3,320 1-8 1-5 107-1,025 199-948 43-2,499	9,033 0 1 294 1,993 971 3 3 640 568 863	
Conductivity (µ) Bicarbonate Boron Calcium Carbonate Chloride Magnesium Nitrogen Potassium Sodium Sulfate Benzene Toluene Ethylbenzene Xylene TPH Bbls Rec'd Site: Location: Status: No. Pits: Area: Medium pH TDS Arsenic Calcium Chloride Chromium Lead Potassium Sodium	1 Ta Gr ina 6	988-1998 sh/Chitwood ady Co., OK active Dates 8/89 8/89 8/89 8/89 8/89	n 11 11 11 11	6.69MM Pit Sludge Range (mg/kg) 5.8-7.9 60.8-4,256 0.45-1.4 24.3-6,654 2.6-779	Avg 6.8 1,074 0,99 925 103			12/97-6/98 12/97-6/98 12/97-6/98 12/97 Dates 9/84-6/93 9/84 9/84-6/93 9/84 9/84	2 2 2 1 1 n 34 1 1 35 1 1	0.0012-<0.01 <0.0002-<0.01 0.002-<0.01 <0.00002 Pit Water Range (mg/L) 6.3-8.6 <0.05 137 10.1-5,548 1.45 <0.1	<pre>Avg 7.7 <0.05 137 1,404 1.45 <0.01</pre>		12/96-1/00 12/96-7/97 12/96-7/97 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00	3 3 3 12 3 3 3 3 3 3 3	3,550=15,600 0 0.26-2.28 140-462 744-4,344 u-3,320 1-8 1-5 107-1,025 199-948 43-2,499	9,033 0 1 294 1,993 971 3 3 640 568 863	
Conductivity (µ) Bicarbonate Boron Calcium Carbonate Carbonate Chloride Magnesium Nitrogen Potassium Sulfate Benzene Toluene Ethylbenzene Xylene TPH Site: Location: Status: No. Pits: Area: Medium PH TDS Arsenic Calcium Chloride Chromium Lead Potassium	1 Ta Gr ina 6	988-1998 sh/Chitwooc ady Co., OK active Dates 8/89 8/89 8/89 8/89	n 11 11 11	6.69MM Pit Sludge Range (mg/kg) 5.8-7.9 60.8-4,256 0.45-1.4 24.3-6,654	Avg 6.8 1,074 0.99			12/97-6/98 12/97-6/98 12/97-6/98 12/97 Dates 9/84-6/93 9/84 9/84-6/93 9/84 9/84 9/84	2 2 2 1 1 34 1 1 35 1 1	0.0012-<0.01 <0.0002-<0.01 0.002-<0.01 <0.00002 Pit Water Range (mg/L) 6.3-8.6 <0.05 137 10.1-5,548 1.45 <0.1 159.5	<pre><0.01 <0.01 <0.01 <0.00002 Avg 7.7 <0.05 137 1,404 1.45 <0.1 159.5</pre>		12/96-1/00 12/96-7/97 12/96-7/97 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00 12/96-1/00	3 3 3 12 3 3 3 3 3 3 3	3,550=15,600 0 0.26-2.28 140-462 744-4,344 u-3,320 1-8 1-5 107-1,025 199-948 43-2,499	9,033 0 1 294 1,993 971 3 3 640 568 863	

Site:	Triple S/Big Pastur	re										*	
Location:	Caddo Co., OK												
Status:	inactive												
No. Pits:	3												
Area:	NA												
		100						14.5					
Medium		Pit Sludge	100				Pit Water					Groundwater	
	Dates n	Range (mg/kg)	Avg		Dates	n	Range (mg/L)	Avg		Date		n Range (mg/L)	Avg
pH										11/83-		27 4.3-8	7.4
TDS										10/83-		34 289-8,812	1,456
Arsenic										10/8		6 <0.001-<0.02	<0.001
Barium										10/83-		32 <0.14-2.3	0
Boron Cadmium							A STATE OF THE			10/8		1 <0.03	<0.03
Calcium										10/8		6 <0.006-0.025	0
Chloride				1						4/8 10/83-		1 26.8 38 3-2,598	27
Chromium					2					10/83-		38 3-2,598 30 <0.06-1.3	320 0.2
Iron										10/8		5 <0.03-16.6	4.8
Lead									100	10/8		5 <0.05	<0.05
Manganese		and the second								10/8		6 <0.02-0.8	0.21
Sodium				100	10 miles					10/83-		30 6-2,176	269
Sulfate										10/8		4 108-580	308
Zinc							,			10/8		4 <0.032-0.036	0.02
Kv (cm/s)		1E-6			200								
* * * * * * * * * * * * * * * * * * * *	and the second second				1								
Site:	Trout			-		-							
Location:	Roger Mills Co., O	K			1 1			1.0					
Status:	active								100				
No. Pits:	8								1.				
Area:	44.8 acres (1.95 m	illion ft")											
Manadir		D# 01										4_ 1 T	
Medium		Pit Sludge					Pit Water			27		Groundwater	
-11	Dates n	Range (mg/kg)	Avg		Dates	n	Range (mg/L)	Avg		Date		n Range (mg/L)	Avg
pH TDS	11/92-7/99 11	7.09-12.37	9.9		3/93-1/00	50	5.9-8	6.9		2/89-1		82 5.2-12.84	7.51
Conductivity (µ)					8/98 8/98	1	7,166	7,166		2/8	3	1 2,726	2,726
Bicarbonate	100				8/98	1	8,680 95	8,680	;	4.4			
Boron					8/98	1	0.9	95 0.9		0.00		4 4400	4 400
Calcium					8/98	1	729	729		2/8	,	1 4,130	4,130
Carbonate					8/98	1	0	0					
Chloride	11/92-7/99 10	<1000-17,500	11,010		1/89-1/00	87	180-53,600	15,497		2/89-1	/nn 3	45 u-3,150	114
Magnesium	11102 1100 10	17000 17,000	11,010		8/98	1	287	287		2/05-1	700 2	45 u-5,150	114
Nitrogen					8/98	- 1	0	0		2/8	9	1 55	55
Potassium					8/98	. 1	36	36		2/8		1 322	322
Sodium					8/98	1	1,201	1,201		2/8		1 10	10
Sulfate			14		8/98	1	2,704	2,704		2/8		1 227	227
тос								.		2/8		1 370	370
Benzene				1	8/98	1	<0.0005	<0.0005		4.5			
Toluene	*	100			8/98	. 1	0.0535	0.0535					
Ethylbenzene					8/98	1	<0.0005	<0.0005					
Kylene					8/98	. 1	<0.0005	<0.0005					
TPH					8/98	1	0.16	0.16					
Site:	Walker							* •					
Location:	Carter Co., OK												
Status:	inactive												
No. Pits:	3	. a2s		**	1								
Area:	7.8 acres (337,500	πτ)											
Modium		Dit Ol					Du 144.7						
Medium	. Date -	Pit Sludge	A		D-1		Pit Water					Groundwater	
.	Dates n	Range (mg/kg)	Avg		Dates	n	Range (mg/L)	Avg		Date		n Range (mg/L)	Avg
pH Chloride					8/83-8/85	2	180-7,500	2 040					
Onlonde	• "		* .	100	0/03-0/03	4	100-7,500	3,840					
						-							
Site:	Washita			7									
Site: Location:	Washita Grady Co., OK												
Location:	Grady Co., OK												
Site: Location: Status: No. Pits:													
Location: Status:	Grady Co., OK inactive	·ft2)											
Location: Status: No. Pits:	Grady Co., OK inactive 6	l ft2)											
Location: Status: No. Pits: Area:	Grady Co., OK inactive 6) ft2) Pit Sludge					Pit Water					Groundwater	
Location: Status: No. Pits: Area:	Grady Co., OK inactive 6		Avg		Dates	n	Range (mg/L)	Avg		Date	es.	Groundwater n Range (mg/L)	Avg
.ocation: Status: No. Pits: Area: Medium	Grady Co., OK inactive 6 6.0 acres (260,500	Pit Sludge	Avg		Dates 2/85	n 1		Avg 1,500		Date	es.		Avg
ocation: Status: No. Pits: Area: Medium	Grady Co., OK inactive 6 6.0 acres (260,500 Dates n	Pit Sludge	Avg				Range (mg/L)			Date	98		Avg
.ocation: Status: No. Pits: Area: Medium Chloride	Grady Co., OK inactive 6 6.0 acres (260,500 Dates n	Pit Sludge	Avg				Range (mg/L)			Date	es		Avg
ocation: Status: No. Pits: Area: Medium Chloride Site: .ocation:	Grady Co., OK inactive 6 6.0 acres (260,500 Dates n Webb/Femco Mc Clain Co., OK	Pit Sludge	Avg				Range (mg/L)			Date	9 S		Avg
ocation: status: do. Pits: drea: dedium Chloride Site: do.cocation: status:	Grady Co., OK inactive 6 6.0 acres (260,500 Dates n Webb/Femco Mc Clain Co., OK active	Pit Sludge	Avg				Range (mg/L)			Date	98		Avg
ocation: Status: No. Pits: Area: Aedium Chloride Site: .ocation: Status: No. Pits:	Grady Co., OK inactive 6 6.0 acres (260,500 Dates n Webb/Femco Mc Clain Co., OK active 5	Pit Sludge Range (mg/kg)	Avg				Range (mg/L)			Date	es.		Avg
ocation: Status: No. Pits: Area: Aedium Chloride Site: .ocation: Status: No. Pits:	Grady Co., OK inactive 6 6.0 acres (260,500 Dates n Webb/Femco Mc Clain Co., OK active	Pit Sludge Range (mg/kg)	Avg				Range (mg/L)			Date	28		Avg
Location: Status: No. Pits: Area: Medium Chloride Site: Location: Status: No. Pits: Area:	Grady Co., OK inactive 6 6.0 acres (260,500 Dates n Webb/Femco Mc Clain Co., OK active 5	Pit Sludge Range (mg/kg)	Avg				Range (mg/L) 1,500			Date	98	n Range (mg/L)	Avg
Location: Status: No. Pits:	Grady Co., OK inactive 6 6.0 acres (260,500 Dates n Webb/Femco Mc Clain Co., OK active 5 11.9 acres (520,000	Pit Sludge Range (mg/kg)			2/85	1	Range (mg/L) 1,500	1,500				n Range (mg/L)	
Location: Status: No. Pits: Area: Medium Chloride Site: Location: Status: No. Pits: Area: Medium	Grady Co., OK inactive 6 6.0 acres (260,500 Dates n Webb/Femco Mc Clain Co., OK active 5	Pit Sludge Range (mg/kg)	Avg		2/85 Dates	1 n	Range (mg/L) 1,500 Pit Water Range (mg/L)	1,500		Date	98	n Range (mg/L) Groundwater n Range (mg/L)	Avg
Location: Status: No. Pits: Area: Medium Chloride Site: Location: Status: No. Pits: Area: Medium	Grady Co., OK inactive 6 6.0 acres (260,500 Dates n Webb/Femco Mc Clain Co., OK active 5 11.9 acres (520,000	Pit Sludge Range (mg/kg)			2/85 Dates 1/91-1/00	n 61	Range (mg/L) 1,500 Pit Water Range (mg/L) 6,95-9.39	1,500 Avg 8.14		Date 4/90-7	es /96	n Range (mg/L) Groundwater n Range (mg/L) 67 6.8-8.39	Avg 7.48
Location: Status: No. Pits: Area: Medium Chloride Site: Location: Status: No. Pits: Area: Medium	Grady Co., OK inactive 6 6.0 acres (260,500 Dates n Webb/Femco Mc Clain Co., OK active 5 11.9 acres (520,000	Pit Sludge Range (mg/kg)			2/85 Dates	1 n	Range (mg/L) 1,500 Pit Water Range (mg/L)	1,500		Date	es /96	n Range (mg/L) Groundwater n Range (mg/L)	Avg

Site:	York	1					6.00	54 g		
Location:	Mc Clain Co., OK									
- 177										
Status:	abandoned									
No. Pits:	6	_4_40								
Area:	>7.5 acres (>326,	250 ft²)		150 150						
						1,32				
Medium		Pit Sludge				Pit Water	1.3		Groundwater	
1 to 1	Dates n	Range (mg/kg)	Avg	Dates	n	Range (mg/L)	Avg	Dates	n Range (mg/L)	Avg
Arsenic	1/97-2/97 3	<0.001-<0.03	0.01	1/97	3	u-<0.03	< 0.03			
Barium	1/97-2/97 3	<0.001-1.49	0.5	1/97	3	0.29-1.49	0.88			
Cadmium	1/97-2/97 3		0.006	1/97	3	u-<0.01	<0.01			
Chloride	1/97 1	36	36	1/97-2/97	22	4-53	34			
Chromium	1/97-2/97 2	<0.01-0.2	0.11	1/97	3	u-<0.01	<0.01			
Iron	1/01-2/01	-0.01 0.2	0.11	1/97	3	0.73-1	0.86			
Lead	1/97-2/97 2	<0.03-0.1	0.07	1/97	3	u-<0.03			and the second	
					3		<0.03			
Mercury	1/97 1	<0.0005	<0.0005	1/97	3	u-<0.0005	<0.0005			4.3
Potassium		1 4	12.5	14 Table 1	_	5.5				
Selenium	1/97 1	<0.04	<0.04	1/97	3	u-<0.04	<0.04	4.5 miles	+1/4 , $+1/4$	
Silver	1/97 1	<0.01	<0.01	1/97	3	u-<0.01	u-<0.01	4.		
Zinc	1/97. 1	0.12	0.12	1/97	5	0.022-0.12	0.05			
Benzene				1/97	2	<0.001	<0.001	1.00		
Toluene			4	1/97	2 .	<0.001	<0.001	And the second		
Ethylbenzene				1/97	2	<0.001	<0.001			
Xylene		and the second second		1/97	2	<0.001	<0.001			
TPH				1/97					•	
TPH .		4	Table 1 Section 1	1/97	2	<1-757	379		•	
voc				1/97	2	u	u			-
Herb, Pest				1/97	2	u	u			
riold, r cot		and the first of the		1701	. ~		u .			
Site:	Albany Tank Clea	ning Varde				} 				
Location:	Shackelford Co., 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
Status:	abandoned	'^					1.00			
			The state of the s							
No. Pits:	6	100								1, 5
Area:	NA				1 14					
		t factor								
Medium		Pit Sludge				Pit Water		7	Groundwater	
A 4	Dates n	Range (mg/kg)	Avg	Dates	. n . :	Range (mg/L)	Avg	Dates	n Range (mg/L)	Avg
Arsenic	12/00 9	<5-8.2	4.50				***			
Barium	12/00 10	60-1,300	3.75				and the second			
Cadmium	12/00 10	<0.5-9.4	4.50							
Chloride	12/00 17	23-4,490	1,541							
Chromium	12/00 9	12.2-114	30.70				A CAMPAGE TO STATE			
Lead	12/00 10		14.30			The state of the s				
Mercury	12/00 . 10		0.93				and the second			
Selenium	12/00 10		<5							
							4			
Silver	12/00 10		5.50							
TPH	12/00 17		16,605			production and the second				
Benzene	12/00 12		<0.005							
Toluene	12/00 12		<0.005			Street Street				
Ethylbenzene	12/00 12		<0.005	100		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Carlotte State	A STATE OF THE STA		1.7
Xvlene	12/00 12	<0.010-0.669	<0.01		"				A STATE OF THE STA	100

Site:															
•	Briggs														
Location:	Matagorda C	~ TV													
		U., IX													
tatus:	abandoned														
o. Pits:	1														
rea:	7.2 acres (31	2,500	ft²)					. to							
/ledium			Pit Sludge					Pit Water					G	roundwater	
nodium.	Dates	_		A		Dates	_		A						
	Dates	n	Range (mg/kg)	Avg		Dates	n	Range (mg/L)	Avg			Dates	n	Range (mg/L)	Avg
Н												6/96	. 3	5.94-6.74	6.36
Conductivity												6/96	3	1.2-3.8	2.4
'DS												6/96	3	760-2541	1100
rsenic	6/96	16	0.4-7.7	2.80								6/96	- 3	<0.005-0.013	0.01
Barium	6/96	16	68-1,500	606.00								6/96	3		
														0.5-0.93	0.69
admium	6/96	16	<0.5-0.86	0.51								6/96	3	0.016-0.027	0.02
Chloride	6/96	16	1,300-10,000	6007.00								6/96	. 3	360-910	573.0
hromium	6/96	16	138-354	206.00				1.0				6/96	3	< 0.005	<0.00
ead	6/96	16	<0.5-82	22.00								6/96	3	<0.005-0.039	0.02
fercury	6/96	16	<0.02-<0.1	< 0.02								6/96	3	<0.002-0.001	0.00
elenium	6/96	16	<0.1-<0.5	<0.1								6/96	3	<0.005-<0.1	<0.00
ilver	6/96	16	<0.1-0.5	<0.1											
	0/90	10 .	~0.1-0.5	-0.1								6/96	3	<0.005	<0.00
ulfate												6/96	3	. 18-110	54
PH	6/96	16	0.1-2.1	0.90	1.0										
PH (%)	6/96	16		9.00E-05											
ite:	 Dahl .									-					
ocation:	Bee Co., TX														
status:	inactive														
lo. Pits:	3														
rea:	11.0 acres (4	80,000) ft*)												
ledium			Pit Sludge					Pit Water					G	roundwater	
	Dates	n	Range (mg/kg)	Avg		Dates	n	Range (mg/L)	Avg			Dates		Range (mg/L)	۸
hloride	Butto		rango (mg/ng/	7.179		6/87-8/87						Jaies	n	range (mg/L)	Avg
nioriae						0/87-8/87	4	3,000-8,000	4,713						
ite:	Falcon Lake														
ocation:	Zapata Co., 7	TΧ													
tatus:	inactive														
o. Pits:	2								*						
		0.400	r.2\												
rea:	5.0 acres (21	8,488	π-)												
/ledium			Pit Sludge					Pit Water					G	roundwater	
	Dates	n	Range (mg/kg)	Avg		Dates:	n	Range (mg/L)	Avg			Dates	'n	Range (mg/L)	Avg
0&G (%)						0,000	4	0.54-10	3.4					0 (0 ,	·
						6/89									
(,						6/89	•	0.04 10	0.4						
	 Fox		-	-	· · · · · · · · · · · · · · · · · · ·	- 6/89		0.04 10				-	•		
ite:	 Fox Matagarda C	- TY				. 6/89		0.04 10						· · · · · · · · · · · · · · · · · · ·	*.
ite: ocation:	 Matagorda C	o., TX	<u> </u>	-	*.	. 6/89		0.04.10						· · · · · · · · · · · · · · · · · · ·	**
ite: ocation: tatus:	 Matagorda C abandoned	o., TX			· · · · · · · · · · · · · · · · · · ·			554.10							<u> </u>
ite: ocation: itatus: lo. Pits:	 Matagorda C abandoned 7			-	· · · · · · · · · · · · · · · · · · ·	9/89						· 			
ite: ocation: itatus: lo. Pits:	 Matagorda C abandoned		²)			9/89	4	3.57 10			.*				<u> </u>
ite: ocation: itatus: lo. Pits:	 Matagorda C abandoned 7		")			6/89									
rite: ocation: tatus: lo. Pits: .rea:	 Matagorda C abandoned 7					6/89							G	roundwater	
site: ocation: Status: Io. Pits: vrea:	 Matagorda C abandoned 7 0.5 acres (22	,233 ft	Pit Sludge	Ανα				Pit Water				Datos		roundwater	Ava
ite: ocation: tatus: lo. Pits: .rea:	 Matagorda C abandoned 7 0.5 acres (22	,233 ft n	Pit Sludge Range (mg/kg)	Avg		Dates	n		Avg			Dates	G	roundwater Range (mg/L)	Avg
ocation: ocation: otatus: lo. Pits: orea: dedium	Matagorda C abandoned 7 0.5 acres (22 Dates 8/95	,233 ft n 4	Pit Sludge Range (mg/kg) 17,300-29,860	36055				Pit Water				Dates			Avg
ite: coation: tatus: o. Pits: rea: ledium luminum ntimony	Matagorda C abandoned 7 0.5 acres (22 Dates 8/95 8/95	n 4 4	Pit Sludge Range (mg/kg) 17,300-29,860 <160	36055 <160				Pit Water				Dates			Avg
ite: ocation: tatus: o. Pits: rea: ledium luminum ntimony rsenic	Matagorda C abandoned 7 0.5 acres (22 Dates 8/95 8/95 8/95	n 4 4	Pit Sludge Range (mg/kg) 17,300-29,860 <160 <60	36055 <160 <60				Pit Water				Dates			Avg
ocation: tatus: lo. Pits: rea: fedium luminum intimony rsenic	Matagorda C abandoned 7 0.5 acres (22 Dates 8/95 8/95	n 4 4	Pit Sludge Range (mg/kg) 17,300-29,860 <160	36055 <160				Pit Water				Dates			Avg
ocation: tatus: lo. Pits: rea: ledium luminum intimony rsenic arium	Matagorda C abandoned 7 0.5 acres (22 Dates 8/95 8/95 8/95	n 4 4	Pit Sludge Range (mg/kg) 17,300-29,860 <160 <60	36055 <160 <60				Pit Water				Dates			Avg
site: ocation: status: lo. Pits: urea: Medium suluminum untimony ursenic starium steryllium	Matagorda C abandoned 7 0.5 acres (22 Dates 8/95 8/95 8/95 8/95	n 4 4 4 4	Pit Sludge Range (mg/kg) 17,300-29,860 <160 <60 61,900-294,900	36055 <160 <60 162,750				Pit Water				Dates			Avg
site: cocation: ctatus: lo. Pits: urea: Medium sluminum untimony ursenic slarium sleryllium cadmium	Matagorda C abandoned 7 0.5 acres (22 Dates 8/95 8/95 8/95 8/95 8/95	n 4 4 4 4 4	Pit Sludge Range (mg/kg) 17,300-29,860 <160 <60 61,900-294,900 1.1-2.4 <2	36055 <160 <60 162,750 1.8 <2				Pit Water				Dates			Avg
ocation: tatus: lo. Pits: rea: fedium luminum intimony rsenic arium eryllium ladmium ladmium	 Matagorda C abandoned 7 0.5 acres (22 Dates 8/95 8/95 8/95 8/95 8/95 8/95 8/95	n 4 4 4 4 4 4	Pit Sludge Range (mg/kg) 17,300-29,860 <160 <60 61,900-294,900 1.1-2.4 <2 14,640-16,380	36055 <160 <60 162,750 1.8 <2 21,150				Pit Water				Dates			Avg
site: ocation: tatus: lo. Pits: krea: Aedium kuluminum kutimony krsenic karium keryllium kadmium kadmium	Matagorda C abandoned 7 0.5 acres (22 Dates 8/95 8/95 8/95 8/95 8/95 8/95 8/95 8/95	n 4 4 4 4 4 4	Pit Sludge Range (mg/kg) 17,300-29,860 <160 <60 61,900-294,900 1.1-2.4 <2 14,640-16,380 93-598	36055 <160 <60 162,750 1.8 <2 21,150 307		Dates	n	Pit Water Range (mg/L)	Avg				, n	Range (mg/L)	
cite: coation: ctatus: lo. Pits: crea: dedium luminum intimony rsenic anium eryllium addium intioride	Matagorda C abandoned 7 0.5 acres (22 Dates 8/95 8/95 8/95 8/95 8/95 8/95 8/95 8/95	n 4 4 4 4 4 4 4 4	Pit Sludge Range (mg/kg) 17,300-29,860 <160 <60 61,900-294,900 1.1-2.4 <2 14,640-16,380 93-598 Range (mg/kg)	36055 <160 <60 162,750 1.8 <2 21,150 307 Avg				Pit Water				Oates Oates			
cite: ocation: tatus: lo. Pits: rea: fedium lluminum intimony rsenic arium eryllium tadmium talcium chloride	Matagorda C abandoned 7 0.5 acres (22 Dates 8/95 8/95 8/95 8/95 8/95 8/95 8/95 8/95	n 4 4 4 4 4 4 4 4	Pit Sludge Range (mg/kg) 17,300-29,860 <160 <60 61,900-294,900 1.1-2.4 <2 14,640-16,380 93-598 Range (mg/kg) 179-433	36055 <160 <60 162,750 1.8 <2 21,150 307 Avg 286		Dates	n	Pit Water Range (mg/L)	Avg				, n	Range (mg/L)	
cation: ctatus: lo. Pits: rea: dedium luminum untimony ursenic larium cadmium cadmium calcium chloride	Matagorda C abandoned 7 0.5 acres (22 Dates 8/95 8/95 8/95 8/95 8/95 8/95 8/95 8/95	n 4 4 4 4 4 4 4 4	Pit Sludge Range (mg/kg) 17,300-29,860 <160 <60 61,900-294,900 1.1-2.4 <2 14,640-16,380 93-598 Range (mg/kg)	36055 <160 <60 162,750 1.8 <2 21,150 307 Avg		Dates	n	Pit Water Range (mg/L)	Avg				, n	Range (mg/L)	
site: ocation: ttatus: lo. Pits: rea: dedium duminum antimony asenic derium deryllium cadmium calcium chloride chromium cooper	Matagorda C abandoned 7 0.5 acres (22 Dates 8/95 8/95 8/95 8/95 8/95 8/95 8/95 8/95	n 4 4 4 4 4 4 4 4	Pit Sludge Range (mg/kg) 17,300-29,860 <160 <60 61,900-294,900 1.1-2.4 <2 14,640-16,380 93-598 Range (mg/kg) 179-433	36055 <160 <60 162,750 1.8 <2 21,150 307 Avg 286		Dates	n	Pit Water Range (mg/L)	Avg				, n	Range (mg/L)	
cite: cocation: ctatus: lo. Pits: crea: dedium luminum intimony crsenic anium ceryllium cadmium chloride chromium copper	Matagorda C abandoned 7 0.5 acres (22 Dates 8/95 8/95 8/95 8/95 8/95 8/95 8/95 8/95	n 4 4 4 4 4 4 4 4 4	Pit Sludge Range (mg/kg) 17,300-29,860 <160 <60 61,900-294,900 1.1-2.4 <2 14,640-16,380 93-598 Range (mg/kg) 179-433 14-36 18,090-27,960	36055 <160 <60 162,750 1.8 <2 21,150 307 Avg 286 25 24,365		Dates	n	Pit Water Range (mg/L)	Avg				, n	Range (mg/L)	
itie: ocation: tatus: lo. Pits: area: dedium luminum intimony arsenic anium eadhium alclium chloride chromium oopper oon ead	Matagorda C abandoned 7 0.5 acres (22 Dates 8/95 8/95 8/95 8/95 8/95 8/95 8/95 8/95	n 4 4 4 4 4 4 4 4 4 4 4	Pit Sludge Range (mg/kg) 17,300-29,860 <160 <60 61,900-294,900 1.1-2.4 <2 14,640-16,380 93-598 Range (mg/kg) 179-433 14-36 18,090-27,960 106-426	36055 <160 <60 162,750 1.8 <2 21,150 307 Avg 286 25 24,365 305		Dates	n	Pit Water Range (mg/L)	Avg				, n	Range (mg/L)	
ite: ocation: tatus: o. Pits: rea: ledium luminum ntimony rsenic arium eryllium admium alcium hloride chromium opper on ead ithium	Matagorda C abandoned 7 0.5 acres (22 Dates 8/95 8/95 8/95 8/95 8/95 8/95 8/95 8/95	n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Pit Sludge Range (mg/kg) 17,300-29,860 <160 <60 61,900-294,900 1.1-2.4 <2 14,640-16,380 93-598 Range (mg/kg) 179-433 14-36 18,090-27,960 106-426 <8-28	36055 <160 <60 162,750 1.8 <2 21,150 307 Avg 286 25 24,365 305 15		Dates	n	Pit Water Range (mg/L)	Avg				, n	Range (mg/L)	
ite: coation: tatus: o. Pits: rea: ledium luminum ntimony rsenic arium eryllium admium alcium hloride hromium opper on aad thium agnesium	Matagorda C abandoned 7 0.5 acres (22 Dates 8/95 8/95 8/95 8/95 8/95 8/95 Dates 8/95 8/95 8/95 8/95 8/95 8/95 8/95 8/95	n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Pit Sludge Range (mg/kg) 17,300-29,860 <160 <60 61,900-294,900 1.1-2.4 <2 14,640-16,380 93-598 Range (mg/kg) 179-433 14-36 18,090-27,960 106-426 <8-28 523-6,800	36055 <160 <60 162,750 1.8 <2 21,150 307 Avg 286 25 24,365 305 15 3,801		Dates	n	Pit Water Range (mg/L)	Avg				, n	Range (mg/L)	
te: coation: atus: o. Pits: rea: edium uminum ntimony senic arrium eryllium admium alcium nloride nromium opper on ead thium aggesium anganese	Matagorda C abandoned 7 0.5 acres (22 Dates 8/95 8/95 8/95 8/95 8/95 8/95 8/95 8/95	n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Pit Sludge Range (mg/kg) 17,300-29,860 <160 <60 61,900-294,900 1.1-2.4 <2 14,640-16,380 93-598 Range (mg/kg) 179-433 14-36 18,090-27,960 106-426 <8-28 523-6,800 274-502	36055 <160 <60 162,750 1.8 <2 21,150 307 Avg 286 25 24,365 305 15 3,801 380		Dates	n	Pit Water Range (mg/L)	Avg				, n	Range (mg/L)	
te: coation: atus: b. Pits: rea: edium uminum ntimony senic arium ayilium alcium nloride hromium ppper on add agnesium agnesium anganese olybdenum	Matagorda C abandoned 7 0.5 acres (22 Dates 8/95 8/95 8/95 8/95 8/95 8/95 8/95 8/95	n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Pit Sludge Range (mg/kg) 17,300-29,860 <160 <60 61,900-294,900 1.1-2.4 <2 14,640-16,380 93-598 Range (mg/kg) 179-433 14-36 18,090-27,960 106-426 <8-28 523-6,800 274-502 <10	36055 <160 <60 162,750 1.8 <2 21,150 307 Avg 286 25 24,365 305 15 3,801 380 <10		Dates	n	Pit Water Range (mg/L)	Avg				, n	Range (mg/L)	
te: coation: atus: b. Pits: rea: edium uminum ntimony senic arium ayilium alcium nloride hromium ppper on add agnesium agnesium anganese olybdenum	Matagorda C abandoned 7 0.5 acres (22 Dates 8/95 8/95 8/95 8/95 8/95 8/95 8/95 8/95	n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Pit Sludge Range (mg/kg) 17,300-29,860 <160 <60 61,900-294,900 1.1-2.4 <2 14,640-16,380 93-598 Range (mg/kg) 179-433 14-36 18,090-27,960 106-426 <8-28 523-6,800 274-502	36055 <160 <60 162,750 1.8 <2 21,150 307 Avg 286 25 24,365 305 15 3,801 380		Dates	n	Pit Water Range (mg/L)	Avg				, n	Range (mg/L)	
ite: coation: tatus: o. Pits: rea: edium luminum ntimony rearium eryllium admium aloium hloride hromium opper on asad titiium agnesium anganese olybdenum ickel	Matagorda C abandoned 7 0.5 acres (22 Dates 8/95 8/95 8/95 8/95 8/95 8/95 B/95 8/95 8/95 8/95 8/95 8/95 8/95 8/95 8	n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Pit Sludge Range (mg/kg) 17,300-29,860 <160 <60 61,900-294,900 1.1-2.4 <2 14,640-16,380 93-598 Range (mg/kg) 179-433 14-36 18,090-27,960 106-426 <8-28 523-6,800 274-502 <10	36055 <160 <60 162,750 1.8 <2 21,150 307 Avg 286 25 24,365 305 15 3,801 380 <10		Dates	n	Pit Water Range (mg/L)	Avg				, n	Range (mg/L)	
ite: coation: tatus: o. Pils: rea: edium tuminum ntimony rsenic arrium admium admium alcium hloride horonium opper on aad thium agnesium anganese olybdenum ickel	Matagorda C abandoned 7 0.5 acres (22 Dates 8/95 8/95 8/95 8/95 8/95 8/95 8/95 8/95	n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Pit Sludge Range (mg/kg) 17,300-29,860 <160 <60 61,900-294,900 1.1-2.4 <2 14,640-16,380 93-598 Range (mg/kg) 179-433 14-36 18,090-27,960 106-426 <8-28 523-6,800 274-502 <10 <14-23 342-396	36055 <160 162,750 1.8 <22 21,150 307 Avg 286 25 24,365 305 15 3,801 380 <10 18.5 399		Dates	n	Pit Water Range (mg/L)	Avg				, n	Range (mg/L)	
ite: coation: tatus: o. Pits: rea: edium luminum ntimony rsenic arium arium arium arium arium alcium hloride hromium opper on aad aagnesium anganese olybdenum cickel hosphorus otassium	Matagorda C abandoned 7	n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Pit Sludge Range (mg/kg) 17,300-29,860 <160 <60 61,900-294,900 1.1-2.4 <2 14,640-16,380 93-598 Range (mg/kg) 179-433 14-36 18,990-27,960 106-426 <8-28 523-6,800 274-502 <10 <14-23 342-396 3,060-11,310	36055 <160 162,750 1.8 <2 21,150 307 Avg 286 25 24,365 15 3,801 380 <10 18.5 399 6,695		Dates	n	Pit Water Range (mg/L)	Avg				, n	Range (mg/L)	
ite: coation: tatus: o. Pits: rea: edium luminum ntimony resenic arrium eryllium admium aloium nloride hromium opper on agnesium agnesium agnesium agnesium ickel hosphorus otassium elenium elenium	Matagorda C abandoned 7 0.5 acres (22 Dates 8/95 8/95 8/95 8/95 8/95 8/95 8/95 8/95	n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Pit Sludge Range (mg/kg) 17,300-29,860 <160 <60 61,900-294,900 1.1-2.4 <2 14,640-16,380 93-598 Range (mg/kg) 179-433 14-36 18,090-27,960 106-426 <8-28 523-6,800 274-502 <10 <14-23 342-396 3,060-11,310 <138	36055 <160 162,750 1.8 <2 21,150 307 Avg 286 25 24,365 305 15 3,801 380 <10 18.5 399 6,695 <138		Dates	n	Pit Water Range (mg/L)	Avg				, n	Range (mg/L)	
ite: coation: tatus: o, Pits: rea: edium luminum ntimony rsenic arrium alcium alcium hloride hromium agnesium agnesium agnese olybdenum ickel hosphorus otassium eleinium oddium	Matagorda C abandoned 7 0.5 acres (22 Dates 8/95 8/95 8/95 8/95 8/95 8/95 8/95 8/95	n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Pit Sludge Range (mg/kg) 17,300-29,860 <160 <60 61,900-294,900 1.1-2.4 <2 14,640-16,380 93-598 Range (mg/kg) 179-433 14-36 18,090-27,960 106-426 <8-28 523-6,800 274-502 <10 <14-23 342-396 3,060-11,310 <138 4,820-9,000	36055 <160 162,750 1.8 <22 21,150 307 Avg 286 25 24,365 305 15 3,801 380 <10 18.5 399 6,695 <138 5,223		Dates	n	Pit Water Range (mg/L)	Avg				, n	Range (mg/L)	
ite: coation: tatus: o. Pits: rea: ledium luminum ntimony rsenic arium erylilum admium admium alcium hloride hromium opper oon aad tihium lagnesium lagnesium hosphorus otassium elenium odium	Matagorda C abandoned 7	n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Pit Sludge Range (mg/kg) 17,300-29,860 <160 <60 61,900-294,900 1.1-2.4 <2 14,640-16,380 93-598 Range (mg/kg) 179-433 14-36 18,090-27,960 106-426 <8-28 523-6,800 274-502 <10 <14-23 342-396 3,060-11,310 <138 4,820-9,000 869-3,750	36055 <160 162,750 1.8 <2 21,150 307 Avg 286 25 5305 15 3,801 410 18.5 399 6,695 <138 5,223 1769		Dates	n	Pit Water Range (mg/L)	Avg				, n	Range (mg/L)	
ite: coation: tatus: o. Pits: rea: ledium luminum ntimony rsenic arium erylilum admium admium alcium hloride hromium opper oon aad tihium lagnesium lagnesium hosphorus otassium elenium odium	Matagorda C abandoned 7 0.5 acres (22 Dates 8/95 8/95 8/95 8/95 8/95 8/95 8/95 8/95	n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Pit Sludge Range (mg/kg) 17,300-29,860 <160 <60 61,900-294,900 1.1-2.4 <2 14,640-16,380 93-598 Range (mg/kg) 179-433 14-36 18,090-27,960 106-426 <8-28 523-6,800 274-502 <10 <14-23 342-396 3,060-11,310 <138 4,820-9,000	36055 <160 162,750 1.8 <22 21,150 307 Avg 286 25 24,365 305 15 3,801 380 <10 18.5 399 6,695 <138 5,223		Dates	n	Pit Water Range (mg/L)	Avg				, n	Range (mg/L)	
ite: cocation: tatus: o. Pils: rea: dedium luminum ntimony resenic arium eryllium admium alcium hloride hromium opper on acad tithium lagnesium lagnesium lokydenum ickel hosphorus otassium elenium odium utlatte	Matagorda C abandoned 7 0.5 acres (22 Dates 8/95 8/95 8/95 8/95 8/95 8/95 8/95 8/95	n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Pit Sludge Range (mg/kg) 17,300-29,860 <160 <60 61,900-294,900 1.1-2.4 <2 14,640-16,380 93-598 Range (mg/kg) 179-433 14-36 18,090-27,960 106-426 <8-28 523-6,800 274-502 <10 <14-23 342-396 3,060-11,310 <138 4,820-9,000 869-3,750 1,140-1,660	36055 <160 162,750 1.8 <2 21,150 307 Avg 286 25 24,365 305 15 3,801 380 <10 18.5 399 6,695 <138 5,223 1769 1,393		Dates	n	Pit Water Range (mg/L)	Avg				, n	Range (mg/L)	
ite: coation: tatus: o. Pits: rea: luminum ntimony rsenic arium eryllium admium alcium hloride hromium opper on sad thium langanese lolybdenum ickel hosphorus otassium elenium odium trontium ulfate in	Matagorda C abandoned 7 0.5 acres (22 Dates 8/95 8/95 8/95 8/95 8/95 8/95 8/95 8/95	n n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Pit Sludge Range (mg/kg) 17,300-29,860 <160 <60 61,900-294,900 1.1-2.4 <2 14,640-16,380 93-598 Range (mg/kg) 179-433 14-36 18,090-27,960 106-426 <8-28 523-6,800 274-502 <10 <14-23 342-396 3,060-11,310 <138 4,820-9,000 869-3,750 1,140-1,660 <18	36055 <160 162,750 1.8 <21,150 307 Avg 286 25 24,365 305 15 3,801 380 <10 18.5 399 6,695 <138 5,223 1769 1,393 <18		Dates	n	Pit Water Range (mg/L)	Avg				, n	Range (mg/L)	
ite: coation: tatus: o. Pits: rea: ledium luminum ntimony rsenic arium admium admium admium admium alcium hloride horper on aad tithium lagnesium langanese lolybdenum ickel hosphorus otassium elenium odium trontium ultate in in	Matagorda C abandoned 7	n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Pit Sludge Range (mg/kg) 17,300-29,860 <160 <60 61,900-294,900 1.1-2.4 <2 14,640-16,380 93-598 Range (mg/kg) 179-433 14-36 18,090-27,960 106-426 <8-28 523-6,800 274-502 <10 <14-23 342-396 3,060-11,310 <138 4,820-9,000 869-3,750 1,140-1,660 <18 816-2,540	36055 <160 162,750 1.8 <22 21,150 307 Avg 286 25 24,365 305 15 3,801 380 <10 18.5 399 6,695 <138 5,223 1769 1,393 418		Dates	n	Pit Water Range (mg/L)	Avg				, n	Range (mg/L)	
ite: cocation: tatus: o. Piis: rea: ledium luminum ntimony resenic arium eryllium admium alcium hloride hromium opper on ead tithium lagnesium lag	Matagorda C abandoned 7	1	Pit Sludge Range (mg/kg) 17,300-29,860 <160 <60 61,900-294,900 1.1-2.4 <2 14,640-16,380 93-598 Range (mg/kg) 179-433 14-36 18,090-27,960 106-426 <8-28 523-6,800 274-502 <10 <14-23 342-396 3,060-11,310 <138 4,820-9,000 869-3,750 1,140-1,660 <18 816-2,540 24-72	36055 <160 162,750 1.8 <2 21,150 307 Avg 286 25 24,365 305 15 3,801 380 <10 18.5 399 6,695 <138 5,223 1769 1,393 <18 1.727 47		Dates	n	Pit Water Range (mg/L)	Avg				, n	Range (mg/L)	
cite: cocation: ctatus: lo. Pits: crea: fedium cluminum intimony rsenic admium cardilum card	Matagorda C abandoned 7 0.5 acres (22 Dates 8/95 8/95 8/95 8/95 8/95 8/95 8/95 8/95	n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Pit Sludge Range (mg/kg) 17,300-29,860 <160 <60 61,900-294,900 1.1-2.4 <2 14,640-16,380 93-598 Range (mg/kg) 179-433 14-36 18,090-27,960 106-426 <8-28 523-6,800 274-502 <10 <14-23 342-396 3,060-11,310 <138 4,820-9,000 869-3,750 1,140-1,660 <18 816-2,540 24-72 177-498	36055 <160 162,750 1.8 <221,150 307 Avg 286 25 24,365 305 15 3,801 380 <10 18.5 399 6,695 <138 5,223 1769 1,393 <18 1,727 47 347		Dates	n	Pit Water Range (mg/L)	Avg				, n	Range (mg/L)	
cite: cocation: ctatus: lo. Pits: crea: fedium cluminum intimony rsenic admium cardilum card	Matagorda C abandoned 7	1	Pit Sludge Range (mg/kg) 17,300-29,860 <160 <60 61,900-294,900 1.1-2.4 <2 14,640-16,380 93-598 Range (mg/kg) 179-433 14-36 18,090-27,960 106-426 <8-28 523-6,800 274-502 <10 <14-23 342-396 3,060-11,310 <138 4,820-9,000 869-3,750 1,140-1,660 <18 816-2,540 24-72	36055 <160 162,750 1.8 <2 21,150 307 Avg 286 25 24,365 305 15 3,801 380 <10 18.5 399 6,695 <138 5,223 1769 1,393 <18 1.727 47		Dates	n	Pit Water Range (mg/L)	Avg				, n	Range (mg/L)	
cocation: cocati	Matagorda C abandoned 7 0.5 acres (22 Dates 8/95 8/95 8/95 8/95 8/95 8/95 8/95 8/95	n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Pit Sludge Range (mg/kg) 17,300-29,860 <160 <60 61,900-294,900 1.1-2.4 <2 14,640-16,380 93-598 Range (mg/kg) 179-433 14-36 18,090-27,960 106-426 <8-28 523-6,800 274-502 <10 <14-23 342-396 3,060-11,310 <138 4,820-9,000 869-3,750 1,140-1,660 <18 816-2,540 24-72 177-498	36055 <160 162,750 1.8 <221,150 307 Avg 286 25 24,365 305 15 3,801 380 <10 18.5 399 6,695 <138 5,223 1769 1,393 <18 1,727 47 347		Dates	n	Pit Water Range (mg/L)	Avg				, n	Range (mg/L)	Avg

Site:	Fresh									
Location:	Zapata Co., TX									
Status:	inactive									
No. Pits:	5									
Area:	0.6 acres (25,500	ft²)								
Medium		Pit Sludge				Pit Water			Groundwater	
	Dates n	Range (mg/kg)	Avg -	Dates	n	Range (mg/L)	Avg	Dates	n Range (mg/L)	Avg
Chloride	9/96-1/98 226		5,360 (est)							
TPH	4/96 1	>16,600	>16,600							
			,							
Site:	Gober		*	 				 		
Location:	Matagorda Co. Co	TV								
	abandoned	19, IA								
Status:										
No. Pits:	3									
Area:	NA		1							
Medium		Pit Sludge				Pit Water			Groundwater	
	Dates n	Range (mg/kg)	Avg	Dates	n	Range (mg/L)	Avg	Dates	n Range (mg/L)	Avg
pН	**	0 (00/	Ŭ,	1/90	3.	7.42-7.98	7.66			9
TDS				1/90	3	1,691-6,165	4,358			
Conductivity				1/90	3					
						2,800-8,300	6,400			
Barium				1/90	3	2-5.71	. 4			
Calcium				1/90	3	98-295	224			
Chloride				1/90	3	1,087-4,324	2,966			
Chromium				1/90	3	< 0.05	< 0.05			-
Iron				1/90	3	0.1-0.7	0.3			
Magnesium				1/90	3	23-53	35			
Potassium				1/90	- 3	22031	26			
Sodium				1/90	3					
						390-1,385	1,015			
Sulfate				1/90	3	21-154	66			
011				 ·				 	<u> </u>	
Site:	Lobo					***				
Location:	Webb Co., TX									
Status:	Abandoned									
No. Pits:	6									
Area:	19.4 acres (847,00	00 ft ²)								
7 11 0 41										
Medium		Pit Sludge				Pit Water			0	
Wediam				_ :					Groundwater	
	Dates n	Range (mg/kg)	Avg	Dates	n	Range (mg/L)	Avg	Dates	n Range (mg/L)	Avg
Chloride				8/2000	5	1,268-32,400	8,067			
O&G (%)				8/2000	5	0.01-9	2.6			
							4.0			
Site:	Manvel Salt Water	Disposal		 						
Location:	Brazoria Co., TX	•								
Status:										
	ahandoned									
	abandoned									
No. Pits:	4	, μ2 ₁								
No. Pits:		3 ft²)								
No. Pits: Area:	4			Ŋ,						
No. Pits: Area:	4 4.2 acres (181,448	Pit Sludge		٠,		Pit Water			Groundwater	
No. Pits: Area:	4		Avg	Dates	n	Pit Water Range (mg/L)	Avg	Dates	Groundwater n Range (mg/L)	Avg
No. Pits: Area: Medium	4 4.2 acres (181,448	Pit Sludge	Avg	Dates	n 6		Avg 8.18	Dates		Avg
No. Pits: Area: Medium pH	4 4.2 acres (181,446 Dates n	Pit Sludge Range (mg/kg)		11/95	6	Range (mg/L) 7.55-8.66	8.18		n Range (mg/L)	_
No. Pits: Area: Medium pH Conductivity	4 4.2 acres (181,448	Pit Sludge	Avg 405	11/95 11/95	6 6 -	Range (mg/L) 7.55-8.66 49.1-3,381	8.18 648.00	2/01	n Range (mg/L) 11 580-51,600	22689
No. Pits: Area: Medium pH Conductivity	4 4.2 acres (181,446 Dates n	Pit Sludge Range (mg/kg)		11/95	6	Range (mg/L) 7.55-8.66	8.18		n Range (mg/L)	22689
No. Pits: Area: Medium pH Conductivity TDS	4 4.2 acres (181,448 Dates n 11/95 13	Pit Sludge Range (mg/kg) 48-2,202	405	11/95 11/95 11/95	6 6 6	Range (mg/L) 7.55-8.66 49.1-3,381 326-20,816	8.18 648.00 3688.00	2/01	n Range (mg/L) 11 580-51,600	22689
No. Pits: Area: Medium pH Conductivity TDS Aluminum	4 4.2 acres (181,448 Dates n 11/95 13	Pit Sludge Range (mg/kg) 48-2,202 24,000-34,420	405 21,105	11/95 11/95 11/95 11/95	6 6 6	Range (mg/L) 7.55-8.66 49.1-3,381 326-20,816	8.18 648.00 3688.00 <0.48	2/01	n Range (mg/L) 11 580-51,600	22689
No. Pits: Area: Medium pH Conductivity TDS Aluminum	4 4.2 acres (181,448 Dates n 11/95 13 11/95 4 11/95 4	Pit Sludge Range (mg/kg) 48-2,202 24,000-34,420 <160	405 21,105 <160	11/95 11/95 11/95 11/95 11/95	6 6 6	Range (mg/L) 7.55-8.66 49.1-3,381 326-20,816 <0.48 <0.32	8.18 648.00 3688.00	2/01	n Range (mg/L) 11 580-51,600	22689
No. Pits: Area: Medium pH Conductivity TDS Aluminum Antimony	4 4.2 acres (181,448 Dates n 11/95 13	Pit Sludge Range (mg/kg) 48-2,202 24,000-34,420	405 21,105	11/95 11/95 11/95 11/95	6 6 6	Range (mg/L) 7.55-8.66 49.1-3,381 326-20,816	8.18 648.00 3688.00 <0.48	2/01	n Range (mg/L) 11 580-51,600	_
No. Pits: Area: Medium PH Conductivity TDS Aluminum Antimony Arsenic Barium	4 4.2 acres (181,448 Dates n 11/95 13 11/95 4 11/95 4	Pit Sludge Range (mg/kg) 48-2,202 24,000-34,420 <160	405 21,105 <160	11/95 11/95 11/95 11/95 11/95	6 6 6	Range (mg/L) 7.55-8.66 49.1-3,381 326-20,816 <0.48 <0.32	8.18 648.00 3688.00 <0.48 <0.32 <1.2	2/01 2/01 2/01	n Range (mg/L) 11 580-51,600 11 540-34,000	22689 11136 <0.05
No. Pits: Area: Medium pH Conductivity TDS Aluminum Antimony Arsenic	4 4.2 acres (181,444 Dates n 11/95 13 11/95 4 11/95 4 11/95 4	Pit Sludge Range (mg/kg) 48-2,202 24,000-34,420 <160 <60	405 21,105 <160 <60	11/95 11/95 11/95 11/95 11/95 11/95	6 6 6 6	Range (mg/L) 7.55-8.66 49.1-3,381 326-20,816 <0.48 <0.32 <1.2	8.18 648.00 3688.00 <0.48 <0.32	2/01 2/01	n Range (mg/L) 11 580-51,600 11 540-34,000	22689 11136

Part	Site:	Manvel Salt Wa	Manvel Salt Water Disposal (cont.)								
Dales Range (rayle) Arg Range (rayle)	Medium		Pit Sludge			Pit Water			Groundwa	ater	
1166 4		Dates		• .	Dates	n Range (mg/L)	Avg	Dates	n Rang	le (mg/L)	Avg
1965 4 - 366-24 2.25 1.15 5 4.01 4.01 4.01 2.01 1 4.02 1.15	jde				11/95 11/95	6 0.09-0.83 6 9.3-2,200	0.38 398				
1155 4 202,00 202 20	min	11/95	4 <24	2.3	11/95	6 <0.01	<0.01	2/01	· -	:0.03	<0.03
146 1, 10, 10, 10, 10, 10, 10, 10, 10, 10,	E E	11/95	4 4,290-27,820 4 <110	12,675 <110	11/95	6 <2.2					
11/16 1 10,000	ge.				11/95	6 69.1-10,000	1835	2/01			3,148
1156 10-26	mium +	11/95	4 50-245 4 12-52	97 22 E	11/95 11/05	6 <0.05	40.05				
11165 4 10,000-06/174 23,33 1195 6 0,044 1,04 1	- 6	11/95	4 10-48	18.5	11/95	90.00	×0.06				
1165 4 22,202 22 22 23 24 24 25 24 24	e e	107	4 40 600 69 740		11/95	0.8-4.7	5.5				
1168 4 2724 2 8 9 1168 6 401	anum	11/95	4 22-45.5		11/95	6 <0.2	<0.04 <0.2				
1195 4 200-343 253 1195 0 0.12-34 0.17 0.15-34 0.17 0.17 0.15-34 0.17		11/95	4 22-262		11/95	6 <0.01	<0.01	2/01	_	4 0.1	<0.1
1166 6 64-12 160 1165 0 1165	T	11/95	7-24		11/95	6 0.12-0.45 6 37-18 5	0.17				
1195 4 1197 1198 6 0.14172 0.37 0.3	anese	11/95	4 85-412	169	11/95	6 <0.01-0.17	0.05				
1198 4	<u>}</u>				11/95	6 <0.0002	<0.0002				
1185	denum	11/95	4 × 10	V 7	11/95	6 0.1-1.72	0.37				
1195	horus	11/95	4 115-402	202	11/95	6 <0.140.63	2.4 4.24				,
1195	sium	11/95	4 5,060-6,970	6,248	11/95	6 2.2-185	38.2				
1165 4 1741,250 5189 11195 6 7010 5030 1165 1 1195 1 1	E E	11/95	4 <1,000	<1,000 <138	11/95	6 <28	7 78				4.
1165	Ī	6	<u>2</u> 7	8	11/95	6 <0.01	40.07 0.00				
11955 4 744-1250 525 1195 6 0.44222 538 1995 1 1995 6 144729 59 1995 1 1995 6 144729 59 1995 1 1995 6 14472 59 1995 1 1995 6 14472 59 1995 1 1995 6 14472 59 1995 1 1995 6 1494 443 11995 6 1494 443 11995 6 14928 1995 1 1995 6 14928 1 1995 6 14928 1995 1 1995 6 14928 1995 1 1995 6 14928 1 1995 1 1995 6 14928 1 1995 1 1995 6 14928 1 1995 1 1995 6 14928 1 1995 1 1995 6 14928 1 1995 1 1995 6 14928 1 1995 1 1995 6 14928 1 1995 1 1995 6 14928 1 1995 1 1	E	11/95	4 4,980-6,420	5,168	11/95	6 78.6-5,010	933				
11956 4	mni e	11/95	4 174-1,250	525	11/95	6 0.44-25.2	5.36				
11/85	, Ę	11/95	4 <76	9/>	11/95	6 <1.52	<1.52				
1185		11/95	4 <18	× 48	11/95	6 <0.36	<0.36				
1155	E E	11/95	4 1,170-2,330	1763	11/95	6 <1.0-0.5	0.38				
11955 4 156-1380 489 11955 6 40226.2 106 201 1 0.15	E E	11/95	4 27-33	23	11/95	6 <0.08	<0.08				
11/95 8 0.25-20 5.1 11/95 6 40.28 2011 11 4.00.00.0142		11/95	4 156-1380	489	11/95	6 <0.02-6.42	1.08	2/01		0.15	0.15
1195 8 0.220 5	inm	11/95	4 40-84.4 8 0.25-55 5	25.1	11/95	6 <0.28	<0.28	2004			300
Munson Butheson Co., TX abandoned S		11/95	8 0.2-20								0.020
Butteson Co., TX abandoned S								2/01		5.0	0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55
Munison Munison Burleson Co., TX PR Water PR Water Avg Groundwater 5 S NA PR Studge PR Studge PR Water Avg Commonwater Post Cask Sile PR Studge PR Studge PR Studge PR Studge PR Studge Post Cask Sile PR Studge PR Studge PR Studge PR Studge PR Studge Post Cask Sile PR Studge PR Studge PR Studge PR Studge PR Studge 1 case Co., TX Shear Cask Studge PR Studge PR Studge PR Studge PR Studge 1 case Co., TX Shear Cask Studge PR Studge PR Studge PR Studge PR Studge 1 case Co., TX Shear Cask Studge PR Studge PR Studge PR Studge PR Studge 1 case Cask Studge PR Studge PR Studge PR Studge PR Studge PR Studge 1 case Cask Studge PR Studge PR Studge PR Studge PR Studge PR Studge 1 case Cask Studge PR Studge PR Studge PR Studge	2 0	Y .						2/01		<5.0 <5.0	2:0 2:0
Burleson Co., TX PH Water PH PH Water PH PH Water PH PH Water PH		Munson									
Balticoned Balticoned Balticoned Balticoned Balticoned Balticoned	.uo	Burleson Co., T	×								
Pit Studge Pit Water Pit Water Pit Water Pit Water Pit Water Pit Studge Pit Water Post Coak Sile	<u>i</u> g	abandoned 5									
Pit Studge		¥									
Post Oak Site Post Oak Sit	. ··		Pit Sludge			Pit Water			Groundwa	ater	
Post Oak Site Post Oak Sit		Dates			Dates		Avg	Dates	n Rang		Avg
Post Oak Site Pit Sludge Pit Slud	9				2/87		2,200				
abandoned 2.3 acres (125,000 tf*) Pit Sludge Dates n Range (mg/L) 8/99 4 5.22-7.35 5.99 8/99 1 0.717 0.717 8/99 2 0.7-1.3 8/99 4 5.22-7.35 5.99 8/99 1 0.717 0.717 8/99 2 0.7-1.3 8/99 4 5.22-7.35 5.99 8/99 1 0.717 0.717 0.717 8/99 2 0.0082-0.190 8/99 4 5.22-7.35 6.99 8/99 1 0.717 0.717 8/99 2 0.0082-0.190 8/99 4 5.22-7.35 6.99 8/99 1 0.017 0.717 0.717 1 8/99 2 0.0082-0.190 8/99 4 0.190-42 0.30 8/99 1 0.017 0.051 8/99 2 0.018-0.03 8/99 4 0.190-42 0.30 8/99 1 0.005 0.005 8/99 2 0.018-0.03 8/99 4 0.190-40 0.00 17.25 8/99 1 0.005 0.005 8/99 2 0.018-0.03 8/99 4 0.004-0.06 0.02 8/99 1 0.005 0.005 8/99 2 0.018-0.09 8/99 4 0.004-0.06 0.02 8/99 1 0.005 0.005 8/99 2 0.018-0.09 8/99 4 0.013-0.07 6.42.50 8/99 1 0.005 0.005 8/99 2 0.018-0.09 8/99 4 0.013-0.07 6.42.50 8/99 1 0.005 0.005 8/99 2 0.018-0.09 8/99 4 0.013-0.07 6.42.50 8/99 1 0.005 0.005 8/99 2 0.018-0.09 8/99 4 0.013-0.07 6.42.50 8/99 1 0.005 0.005 8/99 2 0.005 8/99 7 0.005 0.005 8/99 2 0.005 8/99 7 0.005 0.005 8/99 2 0.018-0.09 8/99 7 0.005 0.005 8/99 2 0.018-0.09 8/99 7 0.005 0.005 8/99 2 0.018-0.09 8/99 8 0.005 0.005 8/99 2 0.018-0.09 8/99 9 0.005 0.005 8/99 2 0.018-0.09 8/99 1 0.005 0.005 8/99 2 0.018-0.09 8/99 1 0.005 0.005 8/99 2 0.018-0.09 8/99 1 0.005 0.005 8/99 2 0.018-0.09 8/99 1 0.005 0.005 8/99 2 0.018-0.09 8/99 1 0.005 0.005 8/99 2 0.005 8/99 2 0.005 0.005 8/99 2 0.005 8/99 1 0.005 0.005 8/99 2 0.005 8/99 1 0.005 0.005 8/99 2 0.005 8/99 2 0.005 0.005 8/99 2 0.005 8/99 2 0.005 0.005 0.005 8/99 2 0.005 0.005 0.005 8/99 3 0.005 0.005 0.005 8/99 1 0.005 0.005 0.005 8/99 2 0.005 0.005 8/99 2 0.005 0.005 8/99 2 0.005 0.005 8/99 2 0.005 0.005 8/99 2 0.005 0.005 8/99 2 0.005 0.005 8/99 2 0.005 0.005 8/99 2 0.005 0.005 8/99 3 0.005 0.005 8/99 3 0.005 0.005 8/99 3 0.005 0.005 8/99 3 0.005 0.005 8/99 3 0.005 0.005 8/99 4 0.005 0.005 8/99 5 0.005 0.005 8/99 5 0.005 0.005 8/99 5 0.005 0.005 8/99 6 0.005 0.005 8/99 7 0.005 0.005 8/99 7 0.005 0.005 8/99 8/99 1 0.005 8/99 8/99 1 0.005 8/99 8/99 1 0.005 8/99		Post Oak Site			2 3						
1.3 acres (125,000 ft ³) Pit Sludge Dates n Range (mg/k) Rigg 4 5,227,35 5,99 8/99 1 0,777 0,777 8/99 2 0,746,43 Rigg 4 5,227,35 5,99 8/99 1 0,777 0,777 8/99 2 0,746,43 Rigg 4 5,227,35 5,99 8/99 1 0,777 0,777 8/99 2 0,746,33 Rigg 4 5,227,35 5,99 8/99 1 0,777 0,777 8/99 2 0,746,33 Rigg 4 5,227,35 5,99 8/99 1 0,61 8/99 2 0,746,33 Rigg 4 0,150,42 0,30 8/99 1 0,61 8/99 2 0,018-0,03 Rigg 4 0,150,42 0,30 8/99 1 0,61 8/99 2 0,116-0,50 Rigg 4 0,004-0.06 0,02 8/99 1 0,009 0,009 8/99 2 0,116-0,50 Rigg 4 0,004-0.06 0,02 8/99 1 0,009 0,009 8/99 2 0,018-0,09 Rigg 4 0,013-0,07 5,42.50 8/99 1 0,009 0,005 8/99 2 0,019-0,09 Rigg 4 130,700 0,05 8/99 1 0,009 0,005 8/99 2 0,019-0,09 Rigg 4 130,700 0,05 8/99 1 0,009 0,009 8/99 2 0,006 Rigg 7 0,013-0,07 5,42.50 8/99 1 0,005 0,005 8/99 2 0,006 Rigg 7 0,013-0,07 5,42.50 8/99 1 0,005 0,005 8/99 2 0,006 Rigg 7 0,013-0,07 5,42.50 8/99 1 0,005 0,005 8/99 2 0,006 Rigg 7 0,013-0,07 5,42.50 8/99 1 0,005 0,005 8/99 2 0,006 Rigg 7 0,013-0,07 5,42.50 8/99 1 0,005 0,005 8/99 2 0,006 Rigg 7 0,013-0,07 5,42.50 8/99 1 0,005 0,005 8/99 2 0,006 Rigg 7 0,013-0,07 5,42.50 8/99 1 0,005 0,005 8/99 2 0,006 Rigg 7 0,013-0,07 5,42.50 8/99 1 0,005 0,005 8/99 2 0,006 Rigg 7 0,013-0,07 5,42.50 8/99 1 0,005 0,005 8/99 2 0,006 Rigg 7 0,013-0,07 5,42.50 8/99 1 0,005 0,005 8/99 2 0,006 Rigg 7 0,013-0,07 5,42.50 8/99 1 0,005 0,005 8/99 2 0,006 Rigg 7 0,013-0,07 5,42.50 8/99 1 0,005 0,005 8/99 2 0,006 Rigg 8/99 2 0,005 0,005 8/99 2 0,006 Rigg 8/99 2 0,006 0,005 8/99 2 0,006 Rigg 8/99 2 0,006 0,005 8/99 2 0,006 Rigg 8/99 2 0,006 0,006 8/99 2 0,006 Rigg 8/99		abandoned									
PH Sludge Dates n Range (mg/kg) Avg Dates n Range (mg/L) By 4 5.22-7.35 5.99 8/99 1 7.26 8/99 2 6.38-6.42 By 5 22-7.35 5.99 8/99 1 0.717 0.717 8/99 2 0.7-1.3 By 6 4 5.22-7.36 5.99 8/99 1 0.717 0.717 8/99 2 0.7-1.3 By 7 4 0.015-0.07 542.50 8/99 1 0.005 0.005 By 8 4 0.015-0.07 542.50 8/99 1 0.005 0.005 By 9 1 0.005 0.005 8/99 2 0.018-0.03 By 9 1 0.005 0.005 8/99 2 0.015-0.03	ż;	1 2.3 acres (125.0	000 ft²)								
Particologya Part	1		Tit Olivian								
1y 8899 4 5.22-7.35 5.89 8999 1 7.26 8799 2 6.38-6.42 8999 4 5.22-7.35 5.89 8899 1 0.177 0.717 8199 2 0.7-1.3 8999 4 220-1200 627-50 8999 1 0.61 8199 2 0.005 8/99 4 0.19-0.42 0.30 8/99 1 -0.005 8/99 2 0.016-0.03 8/99 4 0.19-0.42 0.30 8/99 1 -0.005 8/99 2 0.016-0.03 8/99 4 0.19-0.42 0.30 8/99 1 -0.005 8/99 2 0.016-0.03 8/99 4 0.09 8/99 1 -0.005 -0.005 8/99 2 0.16-0.03 8/99 4 -0.005 8/99 1 -0.005 -0.005 8/99 2 0.16-0.03 8/99 4 -0.005	·. E .	Dates	n Range (mg/kg)		Dates	Pit water n Range (mg/L)	Ava	Dates	<u>,</u>	ater ne (mo/L)	Ava
ty 8899 4 5.22.7.35 5.99 8899 1 0.717 0.717 8899 2 0.7-13 8999 4 3.6.4.4 4.00 8999 1 0.61 8999 2 0.005 8999 4 2.20-1.20 6.27.60 8/99 1 0.61 8/99 2 0.005 8/99 4 0.19-0.42 0.30 8/99 1 <0.005					8/8	1 7.26	7.26	66/8	٧.	18-6.42	6.4
899 4 3.844 4.00 899 1 0.005 8099 2 0.005 8099 2 0.005 8099 899 9 1 0.0105 8099 2 0.0082-0.190 8099 4 0.19-0.42 0.30 8099 1 0.016 0.015 8099 2 0.0082-0.190 8099 4 0.19-0.42 0.30 8099 1 0.005 0.005 8099 2 0.016-0.03 8099 4 18-33 22.50 8099 1 0.005 0.005 8099 2 0.116-550 8099 4 0.10-0.33 0.16 8099 1 0.009 8099 2 0.015-0.03 8099 1 0.009 8099 2 0.015-0.03 8099 1 0.009 8099 2 0.015-0.09 8099 4 0.01-0.33 0.16 8099 1 0.009 8099 2 0.015-0.09 8099 2 0.015-0.09 8099 2 0.015-0.09 8099 4 0.01-0.33 0.16 8099 1 0.009 8099 2 0.015-0.09 8099 2 0.015-0.09 8099 1 0.009 8099 2 0.015-0.09 8099 1 0.009 8099 2 0.015-0.09 8099 1 0.009 8099 2 0.009 8099 2 0.015-0.09 8099 1 0.009 8099 1 0.009 8099 2 0.015-0.09 8099 1 0.009 8099 1 0.009 8099 2 0.015-0.09 8099 1 0.009 8099 1 0.009 8099 2 0.015-0.09 8099 1 0.009 8099 2 0.009 80	activity	8/89	4 5.22-7.35	5.99	8/88	1 0.717	0.717	8/99		7-1.3	7
899 4 0.19-0,42 0.30 899 1 < 0.005 0.005 899 2 0.012-0.103 889 4 960-2200 1390.00 899 1 < 0.005 0.005 899 2 0.018-0.03 889 4 960-2200 1390.00 899 1 < 0.005 0.005 899 2 0.018-0.03 889 4 0.004-0.06 0.02 899 1 < 0.005 0.005 899 2 0.019-0.09 889 7 0.005 0.005 899 2 0.019-0.09 889 7 0.009 0.005 899 2 0.019-0.09 889 8 1 0.009 0.005 899 2 0.019-0.09 889 1 0.009 0.005 899 2 0.019-0.09 889 1 0.009 899 2 0.019-0.09 889 4 130-700 0.05 899 1 0.005 899 2 0.005 899 2 0.005 899 889 4 130-700 0.05 899 1 0.554 899 2 0.005 899 2 0.005 899 3 0.005 899	<u>ი</u>	66/8	3.6-4.4	4.00 627 50	66/8	4 0.005	<0.005 0.61	66/8		0.005	40.005
8/89 4 960-2200 1390.00 8/99 1 150 150 8/99 2 110-550 8/99 4 1000 17.25 8/99 1 <0.005	mi	8/89	4 0.19-0.42	0:30	8/8	1 <0.005	<0.005	66/8		18-0.03	0.025
8/99 4 10990 17.25 8/89 1 <0.005 <0.005 8/99 2 0.15-0.02 8/99 4 <0.004-0.06	g.	66/8	4 960-2,200	1390:00	8/99	1 150	150	8/99		10-550	330
8/99 4 -0.004-0.06 0.02 8/99 1 0.009 0.009 8/99 2 -0.0002 8/99 4 -0.1-0.33 0.16 8/99 1 -0.005 8/99 2 -0.005 8/99 4 130-700 0.05 8/99 1 -0.005 8/99 2 -0.005 8/99 4 0.013-0.07 542.50 8/99 1 0.54 0.54 8/99 2 -0.005-0.042	Wnjt	66/8	4 10990 4 18.33	17.25	8/99	4 40.005	<0.005 <0.005	66/8		15-0.32	0.235
8/99 4 <0.1-0.33 0.16 8/99 1 <0.005 <0.005 8/99 2 <0.01 8/99 4 130-700 0.05 8/99 1 0.54 0.54 8/99 2 <0.005-0.042	2	66/8	4 <0.004-0.06	0.02	66/8	0.009	0.009	66/8		0.0002	<0.0002
8/99 4 130-700 0.05 8/99 1 0.54 0.54 8/99 2 <0.005-0.042	E E	8/89	4 <0.1-0.33	0.16	66/8	40:005	<0.005 0.005	66/8		<0.1 0.00F	00.0 00.1
8/99 4 0.013-0.07 542.50 8/99 1 0.54 0.54 8/99 2 <0.005-0.042		8/89	4 130-700	0.05	88/0	c00.0>	c00.00	88.00 0		0.000	<0.00
7000-90000 7 0 6688 114 114 114 114 114 114 114 114 114 1	(%	8/99	4 0.013-0.07	542.50	8/89	1 0.54	0.54				
	alene	. ",						8/8		05-0.042	0.024
								-			

### Section Particular Part	PR Water	Red River (Diffield S	Services									
PRISINGN PRISINGN PRISINGN PRISINGN PRISINGN PRINCE	Pilibidge Ang Dusins Pilibidge Ang Ang Dusins Pilibidge Ang Pilibidge Ang Ang Dusins Pilibidge Ang Dusins Pilibidge Ang Ang Dusins Pilibidge Ang Ang Dusins Pilibidge Ang Ang Dusins Pilibidge Ang	abandoned											
Pristable Pris	Pristudge Pris	0.02 acres	(755.ft²)										
Range (mg/b) Ang Dates Range (mg/b) Ang Dates Range (mg/b) Ang Dates Range (mg/b) Ang Dates Range (mg/b) Ang	Rampe (mykg)			Pit Sludge				Pit Wate				Groundwater	
1982	1182 2 401 410	Dates	=	Range (mg/kg)	Avg		Dates			Avg	Dates	n Range (mg/l	
1193	1193						11/93			0.01			
1989 2 226-1249 74215	1989 2 224-1249 7425						11/93			2			
1183	11,000						11/93			0.01			
98-45 405 AVG 4005 AVG 4005 AVG 4005 AVG 4005 AVG 4005 AVG 4007 AV	11953 2 4.015 4.01						11/93			970.5			
1,193	1,193						11/93			0.05			
File 2	1186 2 20.002 40.002 1188 2 20.002 40.002						11/93			130			
1183 2 2-6-61 40 40 1183 2 2-601 1183 2 2 4001 1183 2 4001 1	11983 2 4-0 4-0 11983 2 4-0 4-0 11983 2 4-0 4-0 11983 2 4-0 4-0 11983 2 4-0 4-0 11983 2 4-0 4-0 11983 2 4-2 14-2						11/93			.0002			
11973 2 40.01 40.00 11973 2 23.537 11973 2 40.01 40.01 40.01 11973 2 40.01 40.01 40.01 11973 2 40.01	1193						11/93			40			
900.000-450.000 465.000 11193 2 204.241 2.537 914-45 4.05 11193 2 4-4.2 1.4 914-45 4.05 11193 2 4-4.2 1.4 915-45 4.05 4.05 11193 2 4-5.3 4.0 915-45 4.05 4.0 915-45 4.0	11/32 2 24/21 2.537 1.53 2 2.44 2.537 2.545 1.54 2.545 2.545 2.545						11/93			0.01			
1163	38-45 40.5 11182 2 412 114 38-45 40.5 11182 2 412 114 38-45 40.5 11182 2 45.96 50 38-45 40.5 11182 2 45.96 50 38-45 40.5 11182 2 45.96 50 38-45 40.5 11182 2 45.96 50 38-45 40.5 11182 2 45.96 50 38-40 40.5 11182 2 45.96 50 38-40 40.5 11182 2 45.96 50 38-40 40.5 11182 2 41.5 1182 2 41.5 1182						11/93			587			
99) 000-45) 000 405, 000 1183 2 45-95 20 98-45 40 5 1183 2 1-0-11 10.5 Pit Studge 70-1-150	990,000-450,000 405,000 11183 2 45-55 20 PR Studge (mg/kg) Avg Dates n Rampe (mg/L) Avg Dates n						11/93			4.			
1189 2 45-96 20 1905 190	1169 2 4-5-96 20 1169 2 1-5-96 20 1169 2 1-5-96 20 1169 2 1-5-96 20 1169 2 1-5-96 20 1169 2 1-5-96 20 1169 2 1-5-96 20 1169 2 1-5-96 20 1169 2 1-5-96 20 1169 2 1-5-96 20 1169 2 1-5-96 20 20 1169 2 1-5-96 20 20 20 20 20 20 20 20 20 20 20 20 20	11/93	2		405,000		11/93			<u>.</u> γ			
PH Sludge Range (mg/kg) Avg Dates n Range (mg/L) Avg Dates n Range (mg/L) Stage 5.5-1.045 Groundwater Range (mg/L) Avg Dates n Range (mg/L) Avg	PR Water Page (mg/kg)	11/93	7		40.5		11/93			20			
Pit Studge Range (mg/kg) Avg Dates n Range (mg/L) Pit Studge Range (mg/kg) Avg Dates n Range (mg/L) Sibility Avg Dates n Range (mg/L) Avg Dates n Range (mg/L) Sibility Avg Dates n Range (mg/L) Avg Dates n Range	Pit Sludge Range (mg/kg) Avg Dates in Range (mg/L) Avg Dates in Range (mg/L) Avg Countdwater Range (mg/kg) Avg Dates in Range (mg/L) Avg Countdwater 6.5-10.45 163.21 5999 3 772-1559 9999 3 77						11/93	j.		9.0			
Pit Sludge Range (mg/kg) R	Ptr Sludge Range (mg/kg) Avg Dates n Range (mg/L) Avg Dates n Range (mg	Roeling Va	cuum										
PRI Water PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI PRI	PRI Water PRI Water PRI Water Conumbweller PRI Water Conumbweller PRI Water PRI Water Conumbweller Conumbw	Lee Co., T.	× -										
PH Sludge PR Water Avg Dates n Range (mgt), 999 3 G72-715 n Range (mg/kg) Avg Dates n Range (mgt), 999 3 G72-715 3 G72-715 e 405-36 163-71 163-71 999 3 G72-715 3 G72-715 e 405-36 163-71 163-71 163-71 163-71 163-71 e 405-37 63-70 163-71 163-71 163-71 163-71 e 405-23 63-70 163-71 163-71 163-71 163-71 e 401-0.44 0.09 163-71 163-71 163-71 163-71 e 401-0.44 0.05 163-71 163-71 163-71 163-71 f 401-17 0.29 40.5 163-71 163-71 163-71 g 401-17 0.29 40.5 163-71 163-71 163-71 g 65-70-128,000 2.516 7.05 163-71 163-71 163-71 g 65-70-128,000 2.565 1.00 1.00 1.00 10.00 10.00 10.00 <td> Pit Sludge</td> <td>abandoned 8</td> <td></td>	Pit Sludge	abandoned 8											
PH Sludge PH Sludge PH Water PH Sludge PH Water PH W	Pit Sludge Pit Water Avg Dates n Range (mg/L) Avg n Range (mg/L) Avg n Range (mg/L) Avg n Range (mg/L) Avg n n n r r r r r r <td>0.02 acres</td> <td>(760 ft²)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>*:</td> <td></td>	0.02 acres	(760 ft²)								1	*:	
Range (mg/kg) Avg Dates n Range (mg/L) Avg Dates n Counnelwater	Ramge (mg/kg)			0 10				cto/M #ID					
6 5.5-1.045 (1.62.8) 9999 3 6.76.7.15 9999 3 6.76.7.15 9999 3 772-1558 9999 3	6 - 40.5-3.6	Dates	-	Range (ma/ka)	Ava		Dates			Ava	Dates	รั	
6	6 - 40.5-3.6				•						66/6		
6 5.5-1,045 183.21 9999 3 77.21508 6 5.5-1,045 183.21 9999 3 77.21508 6 40.5-30 0.37 9999 3 40.30-6.043 9999 3 40.30-6.043 9999 3 40.30-6.05 9999 3 40.2710 9999 3 40.2710 9999 3 40.2710 9999 3 40.2710 9999 3 40.00-6.000-6.	6										66/6		
6 5.5-1,045 18321 999 3 0.3-0.65 6 -0.5 0.37 999 3 -0.1-c1 999 3 -0.0-c5	6 5.5-1,045 183.21 999 193 0.3-0.85 999 2 0.3-0.85 999 2 0.3-0.85 999 2 0.3-0.85 999 2 0.3-0.85 999 2 0.3-0.85 999 2 0.0-0.05	66/6	36	<0.5-3.6	0.67						66/6 6	•	
6 - 40.5 0.37 9.99 3 - 40.14-41 0.00 5653 9.99 3 - 40.005 5653 9.99 3 - 40.005 5653 9.99 3 - 40.005 5653 9.99 3 - 40.005 5653 9.99 3 - 40.005 5653 9.99 3 - 40.005 56.20 9.99 3	6 < <0.5 0.37	66/6	36	5.5-1,045	163.21						66/6		
1442,000 5653 999 3 40,000	1442,000 5653 9.99 3 9.250 9.250 9	9	Č	Ç	. 0						66/6		
1442,000 5653 140-710 4442,000 5653 140-710 4442,000 5653 140-710 4442,000 56326 1463 1463 4442,000 56326 1463 1463 4442,000 56326 1463 1463 4442,000 56326 1463 1463 1463 4442,000 56326 1463 1463 1463 4442,000 56326 1463 1463 1463 4442,000 1463 1463 1463 1463 1463 4442,000 1463 1463 1463 1463 1463 1463 4442,000 1463 1463 1463 1463 1463 1463 4442,000 1463 1463 1463 1463 1463 1463 4442,000 1463 1463 1463 1463 1463 1463 1463 4442,000 1463 14	9 1442,000 5653 140-710 6 6 - 0.5-237 6 6 3.26 9 99 9 1 40-710 6 - 0.5-237 6 3.26 9 99 9 3 - 0.005-0.029 9 99 9 3 - 0.005-0.029 9 99 9 9 9 99 9 9 9 9 9 9 9 9 9 9 9	66/6	S	C.O.	0.3/	V4					66/6		
6 -0.5-237 63.26 9/99 3 -0.005-0.029 6 -0.1-150 11.63 9/99 3 -0.005-0.029 6 -0.1-150 11.63 9/99 3 -0.005-0.020 8 -0.01-0.4 0.09 9/99 3 -0.005-0.001 8 -0.1-0.43 0.35 9/99 3 -0.005-0.001 8 -0.1-0.43 0.35 9/99 3 -0.005-0.001 9 9 9 3 -0.005-0.001 9 9 9 3 -0.005-0.001 9 9 9 3 -0.005-0.001 9 9 9 3 -0.005-0.001 9 9 9 3 -0.005-0.001 9 9 9 3 -0.005-0.001 9 9 9 3 -0.005-0.001 9 9 9 3 -0.05-0.001 9 9 9 3 -0.05-0.001 9 9 9 3 -0.05-0.001 9 9 9 3 -0.05-0.001 9 9 9 3 -0.05-0.001 9 9 9 3 -0.005-0.001 9 9 9 3 -0.005-0.001 9 9 9 3 -0.005-0.001 9 9 9 9 3 -0.005-0.001 9 9 9 9 3 -0.005-0.001 9 9 9 9 3 -0.005-0.001 9 9 9 9 3 -0.005-0.001 9 9 9 9 3 -0.005-0.001 9 9 9 9 3 -0.005-0.001 9 9 9 9 3 -0.005-0.001 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6 -0.5-237 63.26 9/99 3 -0.005-0.029 6 -0.1-150 11.63 9/99 3 -0.005-0.029 6 -0.1-150 11.63 9/99 3 -0.005-0.0014 9/	66/6	33	14-42,000	5653						66/6		
6 < <0.1-150	6	66/6	36	<0.5-237	63.26						66/6		
6 0.01-0.4 0.09 9/99 3 0.06-20 6 <0.1-0.43 0.35 <0.05 9/99 3 0.06-6.0014 8 <0.5 <0.05 9/99 3 0.06-6.0014 7 0.17,000 2.918 9/99 3 1.10-320 9 9 9 9 3 0.06-6.54 9 0.1-1.7 0.29 9 0 0.1-1.7 0.20 9 9 9 9 3 0.06-6.64 9 0 0.1-1.7 0.20 9 9 9 9 3 0.06-6.64 9 0 0.1-1.7 0.20 9 9 9 9 3 0.06-6.64 9 0 0.1-1.7 0.20 9 9 9 9 9 3 0.06-6.64 9 0 0.1-1.7 0.20 9 9 9 9 9 3 0.06-6.64 9 0 0.1-1.7 0.20 9 9 9 9 9 9 0.06-6.64 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 0.01-0.4 0.09 9/99 3 0.06-20 6 -0.1-0.43 0.35 -0.35 9/99 3 0.06-0.0014 8 -0.5 -0.5 9/99 3 0.065 9 9 9 3 0.06-0.0014 9 9 9 9 3 0.065 9 9 9 9 3 0.065 9 9 9 9 3 0.065 9 9 9 9 9 1.10-20 9 9 9 9 9 9 1.10-20 9 9 9 9 9 1.10-20 9 9 9 9 9 1.10-20 9 9 9 9 9 9 1.10-20 9 9 9 9 9 9 9 1.10-20 9 9 9 9 9 9 9 1.10-20 9 1 1 1.100 NA 1 1.100 NA 1 1.100	66/6	36	<0.1-150	11.63	- 1					66/6		
6	6	9	ć		. 6						66/6		
6	6	66/6 ·	S	4.0-10.0	90.0 0						66/6		
9 40.5 40.5 9/99 3 40.005 9/99 3 10-320 9/99 3 110-	9	66/6	36	<0.1-0.43	0.35						66/6		<0.005
7 0-17,000 2,918 9/99 3 110-320 9/99 3 0.15-061 9/99 3 0.15-06	7 0-17,000 2,918 9799 3 110-320 9 0.1-1.7 0.29 3 0.15-061 9 0.1-1.7 0.29 3 0.15-061 9 0.1-1.7 0.29 3 0.15-061 PIE Valer Avg Dates n Range (mg/L) Avg Dates n Range (mg/L) NA 1 1,100 2 65,700-128,000 96,850 NA 1 620	66/6	∞	<0.5	<0.5						66/6		<0.005
7 0-17,000 2,918 9/99 3 0.15-0.61 9 0.1-1.7 0.29 7-0.5-54 0 0-2.6 0.27 Pit Water Groundwater Groundwater Ayg Dates n Range (mg/L) Ayg Dates n Range (mg/L) NA 1 1,100 2 65,700-128,000 96,850 NA 1 620	7 0-17,000 2,918 9/99 3 0.15-0.61 9 0.1-1.7 0.29 7 0.2-6 0.2.7										66/6		183
7 0-17,000 2,918 9 0,1-17 0,29 0 0-2.6 0,27 Pit Sludge n Range (mg/kg) Avg Dates n Range (mg/L) Avg Dates n Range (mg/L) 2 65,700-128,000 96,850 1 65-12.8 9,690	7 0-17,000 2,918 9 0.1-17 0.29 0 0.2.6 0.27 Pit Sludge Range (mg/kg) Avg Dates n Range (mg/L) Avg Dates n Range (mg/L) 2 65,700-128,000 96,850 2 6.5-12.8 9,690										66/6		0.37
9 0.1-1.7 0.29 0 0-2.6 0.27 Pit Sludge n Range (mg/kg) Avg Dates n Range (mg/L) Range (mg/L) Avg Dates n Range (mg/L) 0 65.700-128,000 96,850 1 65-12.8 9,690	9 0.1-1.7 0.29 0 0-2.6 0.27 Pit Valer Range (mg/kg) Avg Dates n Range (mg/L) Avg Dates n Range (mg/L) NA 1 1,100 NA 1 620 2 65,700-128,000 96,850 2 6.5-12.8 9,690	66/6	37		2.918				-		666		2 .
0 0-2.6 0.27 Pit Vater Pit Sludge Pit Sludge Range (mg/L) Avg Dates n Range (mg/L) NA 1 1,100 2 65,700-128,000 96,850 NA 1 620 2 6.5-12.8 9,690	0 0-2.6 0.27 Pit Sludge Avg Dates n Range (mg/L) Avg Dates n Range (mg/L) NA 1 1,100 L2 65,700-128,000 96,850 L2 65,12.8 9,690	66/6	39		0.29	-							
Prit Sludge Prit Water Groundwater Groundwater Ange (mg/L) Avg Dates n Range (mg/L) NA 1 1,100 NA 1 620 NA 1 620 2 65,700-128,000 96,850 NA 1 620 2 6,5-12.8 9,690	Pit Sludge Groundwafer Groundwafer Groundwafer Arnge (mg/kg) Avg Dates n Range (mg/L) Avg Dates n Range (mg/L) NA 1 1,100 NA 1 1,100 NA 1 620 C 65,700-128,000 96,850	66/6	39		0.27								
Pit Sludge Pit Water Groundwafer n Range (mg/kg) Avg Dates n Range (mg/L) n NA 1,100 c 65,700-128,000 96,850 NA 1 620 2 6,5-12.8 9,690	Pit Water Groundwater Groundwater Arg Dates n Range (mg/L) Avg Dates n Range (mg/L) NA 1 1,100 NA 1 620 C 65,700-128,000 96,850 NA 1 620	D.do											
Pit Sludge Pit Water Groundwater n Range (mg/kg) Avg Dates n Range (mg/L) n NA 1 1,100 c 65,700-128,000 96,850 NA 1 620 2 6,5-12.8 9,690 9,690 9,690 9,690	Pit Water Groundwater Groundwater Groundwater Ange (mg/kg) Avg Dates n Range (mg/L) Avg Dates n Range (mg/L) NA 1 1,100 NA 1 1,100 NA 1 620 C 6.5,700-128,000 96,850	Haskell Co.	¥:										
Pit Sludge Pit Water Groundwafer n Range (mg/kg) Avg Dates n Range (mg/L) 2 65,700-128,000 96,850 NA 1,100 NA 1 620 2 6,5-12,8 9,690 9,690 1 1,000 1 1 1,000 1 1 1,000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <t< td=""><td>Pił Sludge Groundwater Groundwater Groundwater n Range (mg/L) Avg Dates n Range (mg/L) Na 1 1,100 NA 1 620 NA 1 620 2 6.5-12.8 9.690</td><td>abandoned</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Pił Sludge Groundwater Groundwater Groundwater n Range (mg/L) Avg Dates n Range (mg/L) Na 1 1,100 NA 1 620 NA 1 620 2 6.5-12.8 9.690	abandoned											
Pit Sludge Pit Water Groundwater Dates n Range (mg/L) Avg Dates n Range (mg/L) NA 2 65,700-128,000 96,850 NA 1 620 NA 2 65-12,8 9,690 NA 2 65-12,8 9,690	Pit Sludge Pit Water Groundwater Dates n Range (mg/L) Avg Dates n Range (mg/L) NA 2 65,700-128,000 96,850 NA 1 620 NA 2 65,712.8 9,690 NA 1 620	· ·											
Pit Nutser Pit Water Groundwater n Range (mg/kg) Avg Dates n Range (mg/L) NA 1 1100 2 65,700-128,000 96,850 NA 1 620 2 6,5-12.8 9,690	Pit Nudge Pit Water Groundwater n Range (mg/kg) Avg Dates n Range (mg/L) 2 65,700-128,000 96,850 NA 1 620 2 6,5-12,8 9,690 NA 1 620	¥											~
n Range (mg/kg) Avg Dates n Range (mg/L) Avg Dates n Range (mg/L) NA 1 1,100 2 65,700-128,000 96,850 2 6.5-12.8 9,690	n Range (mg/kg) Avg Dates n Range (mg/L) Avg Dates n Range (mg/L) NA 1 1,100 2 65,700-128,000 96,850 2 6,5-12.8 9,690			Pit Sludge				Pit Wate				Groundwater	
NA 1 1,100 2 65,700-128,000 96,850 2 6,5-12.8 9,690	NA 1 1,100 2 65,700-128,000 96,850 2 6.5-12,8 9,690	Dates	_	Range (mg/kg)	Avg		Dates			Avg	Dates		
2 65,700-128,000 96,850 2 6,5-12.8 9,690	2 65,700-128,000 96,850 2 6,5-12,8 9,690										₹ ₹	1 1,100	
2 6.5-12.8	2 6.5-12.8	Ą	. 81	65,700-128,000	96,850			1			£	242	
		¥.	7	6.5-12.8	9.690								

Site:	Sorenson R	anch												
ocation:	San Patricio		x								V.			
Status:	inactive													
o. Pits:	1								10 S					
rea:	9.7 acres (4	20.750	ft ²)											
ou.	0.1 00.00 (_0,, 00	" <i>"</i>											
ledium			Pit Sludge					Pit Water				G	roundwater	
	Dates	n	Range (mg/kg)	Avg		Dates	n	Range (mg/L)	Avg		Dates	n	Range (mg/L)	Avg
hloride					100	2/89-4/99	3.	2,200-48,000	21,200 (est)					
			•			<i>i</i>								
te:	S. Texas Di	sposal			100		7 -				* *,			
ocation:	Duval Co. T.	X			40000		a Sa	1, 14						
tatus:	inactive								Jan 1997					
o. Pits:	3					1000								
rea:	7.1 acres (3	08,750	ft²)											
												_		
edium	D-4		Pit Sludge	A	100	D-1	- 2	Pit Water			Dates		roundwater	
hloride	Dates	'n	Range (mg/kg)	Avg		Dates 11/97	n 1	Range (mg/L) 2,900	Avg 2,900		Dates	n	Range (mg/L)	Avg
illolide			1.0			11/5/	'	2,900	2,900					
ite:	SR Service													
ocation:	Duval Co., 1	x												
tatus:	abandoned	-						egi e i						
o. Pits:	2													
rea:	2.1 acres (9	1,500 fi	t ²)								200			
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											
edium			Pit Sludge					Pit Water				G	roundwater	
	Dates	n	Range (mg/kg)	Avg		Dates	n	Range (mg/L)	Avg		Dates	n	Range (mg/L)	Avg
hloride						1/95	1	600	600					
ite:	Steve's Oilfi	-13 0	Mai .			 			1					
te: ocation:	Kleberg Co.		vice				**							
tatus:	abandoned	1/												
lo. Pits:	2													
rea:	0.001 acres	(360 fi	t ²)							100				
4 1 mg - 12 mg													4.4	
ledium			Pit Sludge					Pit Water				G	roundwater	
	Dates	n	Range (mg/kg)	Avg		Dates	n	Range (mg/L)	Avg		Dates	n	Range (mg/L)	Avg
H	9/00	2	7.3	7.3					1.5		9/00	3	6.71-7.9	7.18
onductivity											0.00			
									1		9/00	3	2,230-19,100	0
	0/00		7-0 5	9.25							9/00	3	130	130
rsenic	9/00	2	7-9.5 2 100-4 700	8.25 3.400							9/00 9/00	3 2	130 <0.05	130 <0.05
DS rsenic arium	9/00	. 2	2,100-4,700	3,400							9/00 9/00 9/00	3 2 2	130 <0.05 <0.05-0.24	130 <0.05 0.145
rsenic arium admium	9/00 9/00	2 2	2,100-4,700 1.8-1.9	3,400 1.85							9/00 9/00 9/00 9/00	3 2 2 2	130 <0.05 <0.05-0.24 <0.03	130 <0.05 0.145 <0.03
rsenic arium admium hromium	9/00 9/00 9/00	2 2 2	2,100-4,700 1.8-1.9 43-45	3,400 1.85 44							9/00 9/00 9/00 9/00 9/00	3 2 2 2 2	130 <0.05 <0.05-0.24 <0.03 <0.03	130 <0.05 0.145 <0.03 <0.03
rsenic arium admium hromium ead	9/00 9/00 9/00 9/00	2 2 2 2	2,100-4,700 1.8-1.9 43-45 11-160	3,400 1.85 44 85.5							9/00 9/00 9/00 9/00 9/00 9/00	3 2 2 2 2 2	130 <0.05 <0.05-0.24 <0.03 <0.03	130 <0.05 0.145 <0.03 <0.03 <0.1
rsenic arium admium hromium ead lercury	9/00 9/00 9/00	2 2 2	2,100-4,700 1.8-1.9 43-45	3,400 1.85 44							9/00 9/00 9/00 9/00 9/00	3 2 2 2 2	130 <0.05 <0.05-0.24 <0.03 <0.03	130 <0.05 0.145 <0.03 <0.03 <0.1 <0.001
rsenic arium admium hromium ead ercury elenium	9/00 9/00 9/00 9/00 9/00	2 2 2 2 2	2,100-4,700 1.8-1.9 43-45 11-160 0.427-2.9	3,400 1.85 44 85.5 1.6635	5						9/00 9/00 9/00 9/00 9/00 9/00 9/00	3 2 2 2 2 2 2 2	130 <0.05 <0.05-0.24 <0.03 <0.03 <0.1 <0.001	130 <0.05 0.145 <0.03 <0.03 <0.1 <0.00
rsenic arium admium hromium ead lercury elenium ilver 6-10 (mg/kg)	9/00 9/00 9/00 9/00 9/00 9/00 9/00	2 2 2 2 2 2 2 2 3	2,100-4,700 1.8-1.9 43-45 11-160 0.427-2.9 2.4-77 <0.75 243-595	3,400 1.85 44 85.5 1.6635 39.7 <0.75 475	5						9/00 9/00 9/00 9/00 9/00 9/00 9/00	3 2 2 2 2 2 2 2	130 <0.05 <0.05-0.24 <0.03 <0.03 <0.1 <0.001	130 <0.05 0.145 <0.03 <0.03 <0.1 <0.00
rsenic arium admium hromium aad ercury elenium ilver 6-10 (mg/kg) 10-28	9/00 9/00 9/00 9/00 9/00 9/00 9/00 9/00	2 2 2 2 2 2 2 2 3 3	2,100-4,700 1.8-1.9 43-45 11-160 0.427-2.9 2.4-77 <0.75 243-595 2290-7640	3,400 1.85 44 85.5 1.6635 39.7 <0.75 475 5377	5						9/00 9/00 9/00 9/00 9/00 9/00 9/00 9/00	3 2 2 2 2 2 2 2 2 2 3 3	130 <0.05 <0.05-0.24 <0.03 <0.03 <0.1 <0.001 <0.050	130 <0.05 0.145 <0.03 <0.03 <0.1 <0.00 <0.056
rsenic arium admium hromium sad ercury elenium liver 6-10 (mg/kg) 10-28 6-28	9/00 9/00 9/00 9/00 9/00 9/00 9/00 9/00	2 2 2 2 2 2 2 2 3 3	2,100-4,700 1,8-1,9 43-45 11-160 0,427-2.9 2,4-77 <0.75 243-595 2290-7640 2530-8230	3,400 1.85 44 85.5 1.6635 39.7 <0.75 475 5377 5847	5						9/00 9/00 9/00 9/00 9/00 9/00 9/00	3 2 2 2 2 2 2 2 2 2 3	130 <0.05 <0.05-0.24 <0.03 <0.03 <0.1 <0.001 <0.050	130 <0.05 0.145 <0.03 <0.03 <0.1 <0.00 <0.050
rsenic arium hromium hromium ead ercury elenium liver 6-10 (mg/kg) 10-28 6-28 enzene	9/00 9/00 9/00 9/00 9/00 9/00 9/00 9/00	2 2 2 2 2 2 2 3 3 3 2	2,100-4,700 1,8-1,9 43-45 11-160 0,427-2,9 2,4-77 <0.75 243-595 2290-7640 2530.8230 <1.0-1,3	3,400 1.85 44 85.5 1.6635 39.7 <0.75 475 5377 5847 1.1							9/00 9/00 9/00 9/00 9/00 9/00 9/00 9/00	3 2 2 2 2 2 2 2 2 2 3 3	130 <0.05 <0.05-0.24 <0.03 <0.03 <0.1 <0.001 <0.050	130 <0.05 0.145 <0.03 <0.03 <0.1 <0.00 <0.056
rsenic arium admium hromium ead ercury elenium liver 6-10 (mg/kg) 10-28 6-28 enzene enthylbenzene	9/00 9/00 9/00 9/00 9/00 9/00 9/00 9/00	2 2 2 2 2 2 2 2 3 3 3 2 2	2,100-4,700 1.8-1.9 43-45 11-160 0.427-2.9 2.4-77 <0.75 243-595 2290-7640 2530-8230 <1.0-1.3 3.65-4.54	3,400 1.85 44 85.5 1.6635 39.7 <0.75 475 5377 5847 1.1 4,095							9/00 9/00 9/00 9/00 9/00 9/00 9/00 9/00	3 2 2 2 2 2 2 2 2 2 3 3	130 <0.05 <0.05-0.24 <0.03 <0.03 <0.1 <0.001 <0.050	130 <0.05 0.145 <0.03 <0.03 <0.1 <0.00 <0.056
rsenic arium admium aromium sad ercury elenium lver 6-10 (mg/kg) 10-28 6-28 enzene hyblenzene opropylbenzene	9/00 9/00 9/00 9/00 9/00 9/00 9/00 9/00	2 2 2 2 2 2 2 2 3 3 3 2 2 2 2	2,100-4,700 1.8-1.9 43-45 11-160 0.427-2.9 2.4-77 <0.75 243-595 2290-7640 2530-8230 <1.0-1.3 3.65-4.54 1.71-2.01	3,400 1.85 44 85.5 1.6635 39.7 <0.75 475 5377 5847 1.1 4.095 1.86							9/00 9/00 9/00 9/00 9/00 9/00 9/00 9/00	3 2 2 2 2 2 2 2 2 2 3 3	130 <0.05 <0.05-0.24 <0.03 <0.03 <0.1 <0.001 <0.050	130 <0.05 0.145 <0.03 <0.03 <0.11 <0.00 <0.05
senic rirum didnium domium ad arcury leinium ver 6-10 (mg/kg) 10-28 6-28 sinzene hylbenzene sopropylbenzene sopropyltoluene	9/00 9/00 9/00 9/00 9/00 9/00 9/00 9/00	2 2 2 2 2 3 3 3 2 2 2 2 2	2,100-4,700 1.8-1.9 43-45 11-160 0.427-2.9 2.4-77 <0.75 243-595 2290-7640 2530-8230 <1.0-1.3 3.65-4.54 1.71-2.01 <1.0	3,400 1.85 44 85.5 1.6635 39.7 <0.75 475 5377 1.1 4,095 1.86 0.9							9/00 9/00 9/00 9/00 9/00 9/00 9/00 9/00	3 2 2 2 2 2 2 2 2 2 3 3	130 <0.05 <0.05-0.24 <0.03 <0.03 <0.1 <0.001 <0.050	130 <0.09 0.144 <0.00 <0.00 <0.05 <5 <1
senic rirum didnium romium ad arcury elenium ver 6-10 (mg/kg) 10-28 6-28 nnzene hylibenzene popropylibenzene sopropyliounee phthalene	9/00 9/00 9/00 9/00 9/00 9/00 9/00 9/00	2 2 2 2 2 3 3 3 2 2 2 2 2 2	2,100-4,700 1.8-1.9 43-45 11-160 0.427-2.9 2.4-77 <0.75 243-595 2290-7640 2530-8230 <1.0-1.3 3.65-4.54 1.77-2.01 <1.0 13.2-16.9	3,400 1.85 44 85.5 1.6635 39.7 <0.75 475 5377 1.1 4,095 1.86 0.9							9/00 9/00 9/00 9/00 9/00 9/00 9/00 9/00	3 2 2 2 2 2 2 2 2 2 3 3	130 <0.05 <0.05-0.24 <0.03 <0.03 <0.1 <0.001 <0.050	130 <0.05 0.145 <0.03 <0.03 <0.11 <0.00 <0.05
senic rirum didmium didmium ad arcury leinium ver 6-10 (mg/kg) 10-28 6-28 nzene propylbenzene sopropyltoluene phthalene propylbenzene	9/00 9/00 9/00 9/00 9/00 9/00 9/00 9/00	2 2 2 2 2 3 3 3 2 2 2 2 2 2 2	2,100-4,700 1.8-1.9 43-45 11-160 0.427-2.9 2.4-77 <0.75 243-595 2290-7640 2530-8230 <1.0-1.3 3.65-4.54 1.71-2.01 <1.0 13.2-16.9 2.3-2.44	3,400 1.85 44 85.5 1.6635 39.7 <0.75 5377 5847 1.1 4.095 1.86 0.9 15.05							9/00 9/00 9/00 9/00 9/00 9/00 9/00 9/00	3 2 2 2 2 2 2 2 2 2 3 3	130 <0.05 <0.05-0.24 <0.03 <0.03 <0.1 <0.001 <0.050	130 <0.09 0.144 <0.00 <0.00 <0.05 <5 <1
senic rirum didnium domium ad errcury slenium ver 6-10 (mg/kg) 10-28 6-28 nzene spropylbenzene sopropyltoluene phthalene propylbenzene 2,4-frimthylbnzne	9/00 9/00 9/00 9/00 9/00 9/00 9/00 9/00	2 2 2 2 2 2 2 2 2 2 2 2	2,100-4,700 1.8-1.9 43-45 11-160 0.427-2.9 2.4-77 <0.75 243-595 2290-7640 2530-8230 <1.0-1.3 3.65-4.54 1.71-2.01 <1.0 13.2-16.9 2.3-2.44 9.07-10.5	3,400 1,85 44 85.5 1,6635 39.7 <0.75 475 5377 5847 1.1 4,095 1,86 0,9 15,05 2,37 9,785							9/00 9/00 9/00 9/00 9/00 9/00 9/00 9/00	3 2 2 2 2 2 2 2 2 2 3 3	130 <0.05 <0.05-0.24 <0.03 <0.03 <0.1 <0.001 <0.050	130 <0.05 0.145 <0.03 <0.03 <0.11 <0.00 <0.05
senic rirum didnium romium ad ercury leinium leinium lever 6-10 (ng/kg) 10-28 6-28 enzene hyllenzene popropylbenzene sopropylbenzene phthalene propylbenzene 24-trimthylbnzn 3,5-trimthylbnzn	9/00 9/00 9/00 9/00 9/00 9/00 9/00 9/00	2 2 2 2 2 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2	2,100-4,700 1.8-1.9 43-45 11-160 0.427-2.9 2.4-77 <0.75 243-595 2290-7640 2530-8230 <1.0-1.3 3.65-4.54 1.71-2.01 <1.0 13.2-16.9 2.3-2.44 9.07-10.5 2.33-5.74	3,400 1,85 44 85.5 1,6635 39.7 <0.75 475 5377 5847 1,1 4,095 1,86 0,9 15.05 2,37 9,785 4,035							9/00 9/00 9/00 9/00 9/00 9/00 9/00 9/00	3 2 2 2 2 2 2 2 2 2 3 3	130 <0.05 <0.05-0.24 <0.03 <0.03 <0.1 <0.001 <0.050	130 <0.05 0.145 <0.03 <0.03 <0.11 <0.00 <0.05
senic arium addnium rromium romium lad ercury selenium lever 6-10 (mg/kg) 10-28 6-6-28 enzene hylbenzene pyropylbenzene isopropylbulene phthalene propylbenzene 2,4-trimthylbnzn 1,5-trimthylbnzn 1,5-trimthylbnzn 1,5-trylene	9/00 9/00 9/00 9/00 9/00 9/00 9/00 9/00	2 2 2 2 2 2 2 2 2 2 2 2	2,100-4,700 1.8-1.9 43-45 11-160 0.427-2.9 2.4-77 <0.75 243-595 2290-7640 2530-8230 <1.0-1.3 3.65-4.54 1.71-2.01 <1.0 13.2-16.9 2.3-2.44 9.07-10.5	3,400 1,85 44 85.5 1,6635 39.7 <0.75 475 5377 5847 1.1 4,095 1,86 0,9 15,05 2,37 9,785							9/00 9/00 9/00 9/00 9/00 9/00 9/00 9/00	3 2 2 2 2 2 2 2 2 2 3 3	130 <0.05 <0.05-0.24 <0.03 <0.03 <0.1 <0.001 <0.050	130 <0.09 0.144 <0.00 <0.00 <0.05 <5 <1
senic arium admium add errcury slenium loromium	9/00 9/00 9/00 9/00 9/00 9/00 9/00 9/00	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2,100-4,700 1.8-1.9 43-45 11-160 0.427-2.9 2.4-77 <0.75 243-595 2290-7640 2530-8230 <1.0-1.3 3.65-4.54 1.71-2.01 <1.0 13.2-16.9 2.3-2.44 9.07-10.5 2.33-5.74 <2.0-4.36	3,400 1,85 44 85,5 1,6635 39,7 <0.75 5377 5847 1,1 4,095 1,86 0,9 15,05 2,37 9,785 4,035 3,13							9/00 9/00 9/00 9/00 9/00 9/00 9/00 9/00	3 2 2 2 2 2 2 2 2 2 3 3	130 <0.05 <0.05-0.24 <0.03 <0.03 <0.1 <0.001 <0.050	130 <0.09 0.144 <0.00 <0.00 <0.05 <5 <1
rsenic arium admium hromium ead ercury elenium ilver 6-10 (mg/kg) 10-28 6-28 enzene thylbenzene opropylbenzene isopropyltoluene aphthalene propylbenzene 2,4-trimthylbnzn 3,5-trimthylbnzn p-xylene is(2-ethlnxl)phthlte luorene	9/00 9/00 9/00 9/00 9/00 9/00 9/00 9/00	2 2 2 2 2 2 3 3 3 2 2 2 2 2 2 2 2 2 2 2	2,100-4,700 1.8-1.9 43-45 11-160 0.427-2.9 2.4-77 <0.75 243-595 2290-7640 2530-8230 <1.0-1.3 3.65-4.54 1.71-2.01 <1.0 13.2-16.9 2.3-2.44 9.07-10.5 2.33-5.74 <2.0-4.36 15.9-<26.4	3,400 1,85 44 85.5 1,6635 39.7 <0.75 475 5377 5847 1,1 4,095 1,86 0,9 15,05 2,37 9,785 4,035 3,13 20,45							9/00 9/00 9/00 9/00 9/00 9/00 9/00 9/00	3 2 2 2 2 2 2 2 2 2 3 3	130 <0.05 <0.05-0.24 <0.03 <0.03 <0.1 <0.001 <0.050	130 <0.05 0.145 <0.03 <0.03 <0.11 <0.00 <0.05
rsenic arium admium hromium ead ercury elenium liver 6-10 (mg/kg) 10-28 6-28 enzene thylbenzene opropylbenzene isopropyltoluene aphthalene propylbenzene 2,4-trimthylbnzn n,p-xylene is(2-ethhxl)phthlte luorene mthylnaphthin	9/00 9/00 9/00 9/00 9/00 9/00 9/00 9/00	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2,100-4,700 1.8-1.9 43-45 11-160 0.427-2.9 2.4-77 <0.75 243-595 2290-7640 2530-8230 <1.0-1.3 3.65-4.54 1.71-2.01 <1.0 13.2-16.9 2.3-2.44 9.07-10.5 2.33-5.74 <2.0-4.36 15.9-<26.4 3.97<-5.1	3,400 1,85 44 85.5 1,6635 39.7 <0.75 475 5377 5847 1.1 4,095 1,86 0,9 15.05 2,37 9,785 4,035 3,13 20,445 4,485							9/00 9/00 9/00 9/00 9/00 9/00 9/00 9/00	3 2 2 2 2 2 2 2 2 2 3 3	130 <0.05 <0.05-0.24 <0.03 <0.03 <0.1 <0.001 <0.050	130 <0.05 0.145 <0.03 <0.03 <0.1 <0.00 <0.056
rsenic arium admium hromium ead ercury elenium ilver 6-10 (mg/kg) 10-28 6-28 enzene thylbenzene opropylbenzene isopropylbenzene phthalene propylbenzene 2.4-trimthylbnzn 3,5-trimthylbnzn is(2-ethlhxl)phthlte luorene mthylnaphthlin aphthalene -nitrophenol	9/00 9/00 9/00 9/00 9/00 9/00 9/00 9/00	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2,100-4,700 1.8-1.9 43-45 11-160 0.427-2.9 2.4-77 <0.75 243-595 2290-7640 2530-8230 <1.0-1.3 3.65-4.54 1.71-2.01 <1.0 13.2-16.9 2.3-2.44 9.07-10.5 2.33-5.74 <2.0-4.36 15.9-26.4 3.97-<5.1 25.3-37.9 7.41-14.1 <5.1-6.88	3,400 1.85 44 85.5 1.6635 39.7 <0.75 475 5377 5847 1.1 4,095 1.86 0.9 15.05 2.37 9.785 4.035 3.13 20.45 4.485 31.6 10.755 5.94							9/00 9/00 9/00 9/00 9/00 9/00 9/00 9/00	3 2 2 2 2 2 2 2 2 2 3 3	130 <0.05 <0.05-0.24 <0.03 <0.03 <0.1 <0.001 <0.050	130 <0.05 0.145 <0.03 <0.03 <0.1 <0.00 <0.050
rsenic arium admium hromium ead ercury elenium ilver 6-10 (mg/kg) 10-28 6-28 enzene thylbenzene opropylbenzene aphthalene -propylbenzene (2,4-trimthylbnzn n,p-xylene is(2-ethlhxl)phthlte luorene -mthylnaphthln aphthalene -nitrophenol henanthrene	9/00 9/00 9/00 9/00 9/00 9/00 9/00 9/00	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2,100-4,700 1.8-1.9 43-45 11-160 0.427-2.9 2.4-77 <0.75 243-595 2290-7640 2530-8230 <1.0-1.3 3.65-4.54 1.71-2.01 <1.0 13.2-16.9 2.3-2.44 9.07-10.5 2.33-5.74 <2.0-4.36 15.9-<28-4 3.97-<5.1 25.3-37.9 7.41-14.1 <5.1-6.88 11.1-11.7	3,400 1,85 44 85.5 1,6635 39.7 <0.755 475 5377 5847 1.1 4,095 1,86 0.9 15.05 2,37 9,785 4,035 3,13 20,45 4,485 31,6 10,755 5,94 11,4							9/00 9/00 9/00 9/00 9/00 9/00 9/00 9/00	3 2 2 2 2 2 2 2 2 2 3 3	130 <0.05 <0.05-0.24 <0.03 <0.03 <0.1 <0.001 <0.050	130 <0.05 0.145 <0.03 <0.03 <0.1 <0.001 <0.050 <5 <1
rsenic arium admium hromium ead ercury elenium ilver 6-10 (mg/kg) 10-28 6-28 enzene thylbenzene opropylbenzene isopropylbenzene phthalene propylbenzene 2.4-trimthylbnzn 3,5-trimthylbnzn is(2-ethlhxl)phthlte luorene mthylnaphthlin aphthalene -nitrophenol	9/00 9/00 9/00 9/00 9/00 9/00 9/00 9/00	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2,100-4,700 1.8-1.9 43-45 11-160 0.427-2.9 2.4-77 <0.75 243-595 2290-7640 2530-8230 <1.0-1.3 3.65-4.54 1.71-2.01 <1.0 13.2-16.9 2.3-2.44 9.07-10.5 2.33-5.74 <2.0-4.36 15.9-26.4 3.97-<5.1 25.3-37.9 7.41-14.1 <5.1-6.88	3,400 1.85 44 85.5 1.6635 39.7 <0.75 475 5377 5847 1.1 4,095 1.86 0.9 15.05 2.37 9.785 4.035 3.13 20.45 4.485 31.6 10.755 5.94							9/00 9/00 9/00 9/00 9/00 9/00 9/00 9/00	3 2 2 2 2 2 2 2 2 2 3 3	130 <0.05 <0.05-0.24 <0.03 <0.03 <0.1 <0.001 <0.050	130 <0.05 0.145 <0.03 <0.03 <0.1 <0.001 <0.050 <5 <1

Site:	Trant									
Location:	Chambers Co., TX									
Status:	inactive									
No. Pits:	1									
Area:	9.2 acres (399,360 t	ft ²)								
71100.	0.2 20.00 (000,000									
Medium		Pit Sludge				Pit Water			Groundwater	
Modium	Dates n	Range (mg/kg)	Avg	Dates	n	Range (mg/L)	Avg	Dates		Asim
pН	Dates II	(valide (ilidiva)	Avg	6/90	1	8.16	8.16	Dates	n Range (mg/L)	Avg
Conductivity				6/90	1:	1,060	1,060			
TDS				6/90	4	585	585			
Barium				6/90		0.95	0.95			
Bicarbonate				6/90	1	172				
Calcium				6/90	1	34	172			
Chloride	6/90 1	350		6/90	1	189	34			
Chromium	0/90 1	330				0.05	189			
Iron				6/90 6/90	1	0.05	0.05			
					1		0.05			
Magnesium				6/90	1	2	2			
Potassium			1.5	6/90	1	10	10			
Sodium				6/90	1	187	187			
Sulfate				6/90	. 1	77	77			
Site:	Wright							 		
Location:	Ector Co., TX									
Status:	inactive			1.0						•
No. Pits:	1	4								
Area:	1.7 acres (71,700 ft	²)								
Medium		Pit Sludge				Pit Water			Groundwater	
	Dates n	Range (mg/kg)	Avg	Dates	n ·	Range (mg/L)	- Avg	Dates	n Range (mg/L)	Avg
Chloride	9/87 9	362-5,141	1,545	Dutes		rungs (mg/L/	Avg	Dates	ii ixange (ilig/L)	۸vy
Sulfate	9/87 7	<5-71	44							