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A Technology Transfer Seminar

Introduction and Objectives

Perspective on Tight Gas Sands: Geological Characteristics of Major Low-
Permeability Sandstone Gas Reservoirs in the Continental United States

Overview of Canyon Sandstone Geology and Engineering
Regional Tectonic and Stratigraphic Framework of the Val Verde Basin

Canyon Core Display and Coffee Break

Submarine Fan Model and Mapping Methods Applied to Canyon Sandstone
Stratigraphy and Productivity of Ozona Canyon Sandstone, Crockett County
Ozona Canyon Sandstone Composition and Diagenesis

Summary of Ozona Canyon Natural Fractures

Hosted Lucheon

Stratigraphy and Productivity of Sonora Canyon Sandstone, Sutton County
Diagenesis and Reservoir Quality of Sonora Canyon Sandstone
Natural Fractures, Sonora Canyon

Canyon Core Display and Coffee Break

Stress Measurements and Summary of GRI Cooperative Well Database

Review of Operator Survey Results
Identification of Development Challenges
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GRI GEOLOGIC
RESEARCH OBJECTIVES

 Focus on Increased Understanding of Complex
Low-Permeability Reservoirs to Enable Greater
Recovery of Gas

* Provide Geologic Data to Integrate with
Petrophysics, Reservoir Engineering, and
Hydraulic Fracture Modeling

e Develop Insights, Methods, and
Technologies Applicable to Broad
Spectrum of Complex Sandstone Reservoirs

ari/BeEG QAa6105c(e)



WORKSHOP OUTLINE |

Perspective on Tight Gas Sandstones
Overview of Canyon Sandstone Play
Regional Framework

Ozona Canyon Stratigraphy

Ozona Canyon Diagenesis & Fractures
Core Display

&GIN/BEG QAa5933c(e)



WORKSHOP OUTLINE I

Sonora Canyon Stratigraphy

Sonora Canyon Diagenesis & Fractures
Stress Directions

GRI Cooperative Well Engineering Data
Review of Survey Results

Challenges

ari/BEG QAa5933c(f)



PERSPECTIVE ON TIGHT GAS
SANDS: GEOLOGICAL
CHARACTERISTICS OF MAJOR
LOW-PERMEABILITY
SANDSTONE GAS RESERVOIRS
IN THE CONTINENTAL UNITED
STATES
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MAJOR LOW-PERMEABILITY
GAS PLAY IN WEST TEXAS

e 2.2 Tcf Cumulative Production
e 2 Tcf Reserves in Existing Wells

e Producing Area Spans 3,800 mi?

4ri/BEG QA26105¢(g)
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CANYON GAS PRODUCTION
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DEVELOPMENT AND
EXPLORATION POTENTIAL

 Per-Well Recovery Averages 0.7 Bcf
e Drilling Density Averages 1.25 Wells/Section

e Large Undeveloped Area to South

4aril/BEG QAa6105c(h)



CANYON ECONOMICS

e Variable Productivities
— 100 to 20,000 Mcf/d IP
- —0.05 to 5 Bcf Recovery per Well

* Fixed Expenses: Well Completion, Stimulation
— $175,00 to $440,000 per Well

e 0.3 Bcf Production per Well to Cover Well Costs
e 0.7 Bcf Average Well Recovery

* Geologic Targeting can Increase per Well
Recovery

Gri/BEG QAa6105¢(d)



GEOLOGICALLY COMPLEX
LOW-PERMEABILITY RESERVOIRS

e Discontinuous, Laminated Stratigraphy
e Extensive Diagenetic Modification

e Widespread Natural Fractures

Gari/BEG QAa6105c(f)



CANYON RESERVOIR PROPERTIES

- Depth:
Temperature:
Pressure:

Gross Sandstone:
Net Pay:

Porosity:

In Situ Permeability:
Water Saturation:
Trap:

Gri/BEG

2,500 to 8,500 ft
100° to 185°F

500 to 3,500 psi
100 to 1,300 ft

20 to 300 ft

1to 15%

0.001 to 0.03 md
> 20%

Porosity Pinchout

a6105c¢(i)



CANYON SANDSTONE TYPE LOG

PHILLIPS PETROLEUM
Ward No. 11-C
Sutton Co, Texas

Top
m. Canyon

—Top

\cle I. Canyon
pc7
Base
Canyon



REGIONAL TECTONIC AND
STRATIGRAPHIC FRAMEWORK
OF THE VAL VERDE BASIN
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CANYON SANDSTONE
STRUCTURAL SETTING
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DEEP BASIN SHALLOW SHELF

Leonardian,
Wolfcampian,
and Virgilian

Missourian and
Desmoinesian

D/

= BT Garbonates

QA14300¢

Figure Schematic cross section showing Late Pennsyivanian-Early Permian depositional
topography, northeastern Val Verde Basin. Modified from Rall and Rall (1958).



VAL VERDE BASIN
SANDSTONES
I

~CBP.

y Ozona Arch

- Cross Section
Gari/BEG QAas802¢



SW

VAL VERDE CO
. I

m
-0

T 200
8000-

12,0001 4000

Gri/BEG

NE

CROCKETT CO! SUTTON CO
| | [ | |

Cretaceous

upper Leonardian
Ozonga (I Leonardian

Sonora (Wolfcampian)

0 10 mi
0 15 km

QAa5798c-a



SW NE

VAL VERDE CO {CROCKETT CO:! SUTTON CO

# m UL L0
SLTO0

40001

8000 -

12,0001

16,000

20,0004 600

> Sandstone

Gril/BEG QAa5798c-b



SUBMARINE FAN MODEL AND
MAPPING METHODS APPLIED
TO CANYON SANDSTONE
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CANYON SUBMARINE FAN MODEL
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OZONA SANDSTONE ZONE 1
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OZONA CANYON ZONE 1
INITIAL PRODUCTION (MCF) VS. FACIES
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CANYON PRODUCTIVITY
LEVELS OF CONTROL

Depositional Reservoir Architecture, Initial Porosity
and Permeability

Diagenetic Compaction and Cementation Modify
Original Porosity and Permeability

Structural Stress and Natural Fractures

Complicate Well Completion
and Productivity
Hydrodynamic Low Temperatures and Pressures,
Variable Water Saturations
Engineering Well Completion and Stimulation
Techniques

Gari/BEG QAa6105¢(j)



STRATIGRAPHY AND
PRODUCTIVITY OF OZONA
CANYON SANDSTONE,
CROCKETT COUNTY
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OZONA CANYON
STRATIGRAPHY

e Ozona Producing Trend
e Regional Sandstone Distribution

e Submarine Fan Facies

4ri/BEG QA26105¢(m)



OZONA CANYON
GAS FIELDS

| Cored well
| Ozona Canyon

AL VERDE CO
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OZONA ISOPACH MAP
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OZONA STRUCTURE MAP
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OZONA CANYON
INITIAL POTENTIALS
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OZONA CROSS SECTION
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OZONA ZONE 4
LOG FACIES
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OZONA ZONE 3
LOG FACIES
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OZONA CORE DESCRIPTION
SHELL - Baggett NO. 20 - 2
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OZONA CANYON SUMMARY

e Shale-Dominated Interval—Complex
Sandstone Geometries

* Productivity Poorly Correlated with
Regional Sandstone Distribution

e Maximum Sandstone and Log Facies
Maps Help Identify Prospective Reservoirs

4ari/BEG QA26105¢(n)



OZONA CANYON SANDSTONE
COMPOSITION AND DIAGENESIS

Presented by:

Tucker F. Hentz
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PURPOSE AND METHODS

. Sandstoné Samples Examined for Texture,
Composition, and Diagenesis

e 16 Samples from 2 Cores (Texaco Kincaid
No. D-7, Shell Baggett No. 2-20)

e Standard Thin-Section Petrography and
SEM Techniques

e 200 Point Counts per Thin Section

ﬂ'll BEG QAa5237c-b



TEXTURE

* Very Fine to Coarse (Average: Fine Sandstone)
* Very Poor to Moderate Sorting
* Angular to Subrounded Grains

* Average Matrix Content 4.5%

4ri/BEG QAa5237c-c



COMPOSITION

* Mean Composition of Framework Grains
(Normalized to 100%): Q7o Fg Rog

* Mineralogically Immature: Sublitharenites
and Litharenites

&1/ BEG . QAa5237¢c-d



OZONA CANYON
SANDSTONE COMPOSITION
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FRAMEWORK GRAINS

Quartz: 26.0 tq 54.5% of Whole-Rock Volume
Plagioclase: 1.5 to 7.5% of Whole-Rock Volume
* Rock Fragments: 2.0 to 29.5% of Whole-Rock Volume

* Low-Rank MRF’s Predominate: Phyllite, Slate, and
Meta-Siltstone

SRF’s: Shale, Chert, and Limestone

Mean Whole-Rock % of Framework Grains: Quartz (43.7),
Plagioclase (4.3), Orthoclase (0.3), MRF’s (8.2), SRF’s (3.9)

Gri/BEG

QAa5237c-e



AUTHIGENIC CEMENTS

* Ankerite, Quartz, Chlorite, and Fe-Calcite
(18.4, 6.4, 3.7, and 3.2 Mean Whole-Rock %)

* Replacive Minerals (Mostly Pyrite and
limenite) Occur in Trace Amounts

ar 1/BEG QAa5237c-f



DIAGENETIC SEQUENCE

(1) Growth of Chlorite Rims on Framework Grains

(2) Compaction, Causing Deformation of Ductile
Rock Fragments

(3) Precipitation of Quartz Overgrowths

(4) Precipitation of Ankerite and Fe-Calcite,
Dissolution of Feldspar and MRF’s

(5) Pressure Solution and Additional Silica
Cementation at Quartz-to-Quartz Contacts

(6) Fracturing

4ri/BEG

QAa5237c-g



POROSITY

e Thin-Section Porosity (Primary, Secondary) Varies From
0 to 6.5% of Whole-Rock Volume (Mean = 1.4%)

* Primary Porosity Exists as Small (Several Microns)
Intergranular Voids and Within Cements

e Secondary Porosity Occurs Within Partially Dissolved
Feldspars, MRF’s, and Shale Clasts

e Mean Net-Overburden Porosimeter Porosity is 7.6%

e Microporosity Occurs as Voids Between Chlorite
Platelets and Within Ankerite and Calcite Cements

4ri/BEG

QAa5237c-h



POROSITY LOSS

* Ductile, Compaction-Deformed MRF’s

* Pore-Filling Cements, Primarily Ankerite,
Quartz, and Fe-Calcite

* Cements (Ankerite, Fe-Calcite) Replacing
Partially and Wholly Dissolved Framework
Grains (Feldspar, Pelitic MRF’s and SRF’s)

ari/BEG QAa5237c-j



 PERMEABILITY

e Mean Klinkenberg-Corrected Gas Permeability
at Net-Overburden Pressure is 0.024 Md

* Presence of Microfractures in 25% of Thin
Sections Correlates with Samples of Slightly
Higher Permeabilities

4ril/BEG QAa5237c-i



SUMMARY

e Quartz and Pelitic Rock Fragments are the Most
Abundant Framework Grains

* Ankerite and Fe-Calcite are the Primary Cements

* Voids Within Carbonate Cements, Partially Dissolved
Framework Grains, and Microfractures Compose
Visible Porosity

e Microporosity is Present Within Chlorite Grain-
Rimming Cement and Carbonate Cements

e Porosity is Occluded by Extensive Late-Stage
Carbonate Cementation and by Compaction

Deformation of Ductile Rock Fragments
4Gri1/BEG

QAa5237c-k



SUMMARY OF OZONA CANYON
FRACTURES
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NATURAL FRACTURES

Abundant

Vertical

Locally Porous

Mainly Short (>10 inches)
Several Categories (classes)

&Ir1/BEG QAa5933c(a)



OZONA FRACTURE
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STRATIGRAPHY AND
PRODUCTIVITY OF SONORA
CANYON SANDSTONE,
SUTTON COUNTY

Presented by:
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SONORA CANYON
STRATIGRAPHY

e Laterally Discontinuous Submarine-Fan
Sandstones

 Highly Laminated Turbidite Sequences

e Facies Influence Production Patterns

aGri/BEG QAa6105c(k)
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Net-sandstone thickness map of the lower Sonora Canyon map unit, which inchudes both the lower and
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SONORA STRATIGRAPHY
KEY FINDINGS

* Widespread Thick Sandstone—Extreme
Internal Heterogeneity

* Individual Sandstones Rarely more than
a Few Feet Thick

e Highly Lenticular Fan-Channel Sandstones
Less than 1 Mile Wide

e More Sheetlike Fan-Lobe Sandstones Extend
only a Few Miles

e Facies-Influenced Production Patterns
Modified by Post-Depositional Process

Gri/BEG QAa6105¢(1)



DIAGENESIS AND RESERVOIR
QUALITY OF SONORA CANYON
SANDSTONE
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CANYON SANDSTONE COMPOSITION

Rock fragments

Feldspar
Gri/BEG
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CANYON SANDSTONE
PARAGENETIC SEQUENCE

4ri/BEG

LR R S

. Siderite rims, chlorite

Quartz overgrowths
Calcite

Feldspar dissolution
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Ankerite
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SIDERITE OCCURRENCE

* Bedding-parallel layers
— Maean thickness (geometric) = 2 inches
— Most layers <3 inches thick

* Irregular patches <3 — 4 inches in diameter

GrI/BEG QAa2313c



CONDITIONS FOR
SIDERITE PRECIPITATION

e Low Eh

* High Pco,

 Low [S?]

e High [Fe*2]/[Ca*?]

Gr1/BEG



GEOCHEMICAL ENVIRONMENTS
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ORGANIC MATTER — DIAGENETIC ZONES

CO,/ HCOj5”
production
| a +¢ Carbonate
Zone | 28 |52  st3c
=2 | 2% (% PDB)
Oxidation
0to No ppt.
CH20 + 02 B 002 + H20 0.01
Z Post - oxic > L0 to -25 7
Sulfate reduction
0.01 0 to -25
2CH,0 + S042 3 S2 +2C0O, + 2H,0 | 010
Methanogenesis
10 to -10 to +15
2CH,0 > CH,4 + CO, 1000

Gr1/BEG

After Curtis (1978) _, ...




CANYON SIDERITE CEMENT

513C (%. PDB)

Range Average
+0.6 to +4.0 +2.4

5180 (%. PDB)

Range Average
-0.7 to +1.2 g +0.3

ari/BEG
QAa5292¢c



CANYON SIDERITE
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COMPARISON OF RESERVOIR QUALITY
IN CANYON SANDSTONES

Siderite-rich Siderite-poor

(>10%) (<10%)

Porosity (%) 7.9 6.4
Permeability (md)

Unstressed 0.069 0.014

Stressed 0.042 0.009
Quartz cement (%) 6 11
Minus-cement
porosity (%) 33 16
No. samples 14 27

ari/BEG QAa2314c



CONCLUSIONS

¢ Siderite rims formed during early burial (300 m)
of Canyon deep-water marine sediments.

¢ Siderite precipitated in a methanic geochemical
environment from sea-water-derived pore fluids.

¢ Siderite cement inhibited compaction and
quartz cementation.

¢ Canyon sandstones with abundant siderite
retain higher porosity and permeability.

GrI/BEG

QAa2315¢



NATURAL FRACTURES,
SONORA CANYON

Presented by:

Stephen E. Laubach

Bureau of Economic Geology
The University of Texas at Austin

Austin, Texas



NATURAL FRACTURES
SUMMARY

e Documented in Three Wells

* 191 Natural Fractures in 435 ft of Sandstone
* 61% are in Siderite-Cemented Layers

e More Than 200 Drilling-Induced Fractures

e Some Natural Fractures are Permeable (RFT)
* Range of Strikes

GrI/BEG ' QAa6016¢ (a)
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FRACTURE ATTRIBUTES i

* Fractures are Short:
— Many Less Than 3 Inches Tall
— Few More Than 1 ft
 End at Shale Interbeds or Cement Boundaries
e Little Vertical Interconnection
e Spacing: Several Inches to Tens of Feet

GY1/BEG QAa6016c (c)



FRACTURE WIDTH vs DEPTH
CANYON SANDSTONE
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FRACTURE HEIGHT vs DEPTH
CANYON SANDSTONE
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FRACTURE CLASSES

Fractures Only in Siderite-Cemented Zones
Fractures Primarily Outside Siderite Zones

Quartz Filled
Quartz and Calcite Filled

Gr1/BEG QAa5933¢(b)



FRACTURE SWARM SPACING
VS. UNIT THICKNESS
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NATURAL FRACTURES LOCALIZED IN

ft SIDERITE-CEMENT ZONES
6138 —
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|NFERRED FRACTURE PATTERNS

Layer

Siderite Layer

4ri/BEG er



FRACTURE STRIKE

e Northeast and Northwest Strikes
e Northeast Grain Dominant
e Some Layers May Have Random Strikes

Gri/BEG QAa6016¢ (d)



NATURAL FRACTURE
IN TWO CANYON ELLS
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PHILLIPS
Ward "C" No. 11

Fracture # Depth (ft)
N-16 5646.75
N-20 5560.80
N-22 5516.65
N-23 5515.68

4 ENRONA

awyer " "
No. 144-5

Fracture # Depth (ft)
N-33 5969.93
N-34 5968.78
N-35 5968.72
N-36 5960.30
N-38 5958.08
N-39 5958.08
N-40 5957.35
NI-1 5957.35

Comments

FRACTURE ORIENTATIONS

FROM CORE DATA

Azimuth

300
091
244
232

Azimuth

006
165
074
141
123
153
044
044

Comments

3

1
1
'3

1
1

Comments
1

-h b

1,4

A=NDN"

1. Fracture in siderite-cemented layer

2. Fracture in shale
3. Fracture in same cored interval

4. Orientation uncertain
5. Possibly a drilling-induced fracture

Q Bureav
of
Economie
Geology

QAa1709¢c



_ SCHLEICHER CO

FRACTURES
AND
SHmax

- Canyon gas fields
3t Gas well

* Miller and others (1991)
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OBSERVED
FRACTURE STRIKES
ﬁ?{é’ﬁ‘ Ozona Archl
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PREDICTED FRACTURE
STRIKES — LATE

- Predicted Fracture Strike
‘GYIIBEG QAa5935¢



SPECIMEN GEOMETRIES
USED FOR DETERMINING
FRACTURE TOUGHNESS

NOTCHED BRAZILIAN
DISC SPECIMEN

—>{w|<- F
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BEND SPECIMEN
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FRACTURE TOUGHNESS

VS. DEPTH
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Phillips Ward C No. 11 VARIOUS ROCK

=] . PROPERTIES VS. DEPTH
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SONORA CANYON FRACTURES

Targets for Horizontal Drilling?

Limited Vertical Connectivity (Narrow Targets)

Effect on Hydraulic Fracture

Fracture Branching/Near-Wellbore Tortuosity

Gr'1/BEG QAa5933c¢(c)



STRESS MEASUREMENTS AND
SUMMARY OF GRI
COOPERATIVE WELL DATABASE

Presented by:

Robin Hill

CER Corporation

Las Vegas, Nevada



Database Development
Lower, Middle and Upper Canyon Sands

Oriented core

Wireline logs
Routine and special core analyses
In-situ stress measurements
Pre- and post-frac well tests
Minifrac and propped frac treatment monitoring

Fracture diagnostics




Research Focus

Acquisition and analysis of data to assist producers in
resolving technical challenges in the Canyon Sands:

Improved geological characterization
Improved payzone identification

Determination of hydraulic fracture azimuth

Quantification of stresses in sands and shales

Development of a more effective stimulation treatment




Importance of Fracture Azimuth
(poor drainage scenario)

1 mile

o
O o O
i
®

assumes hortheast-southwest fracture azimuth




Importance of Fracture Azimuth
(optimum drainage scenario)

1 mile
O O
O

assumes north-south fracture azimuth
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Prediction and Measurement of
Hydraulic Fracture Azimuth

Techniques Applied

Direct observation and orientation of an induced fracture

Borehole imaging of an induced fracture
Measurement and correlation of drilling-induced fractures

Borehole breakouts/elongation

Acoustic velocity anisotropy
Anelastic strain recovery
Borehole microseismic survey

Oriented gamma ray survey of tagged frac




Stress Fields
and
Drilling-Induced
Fractures

Core Boundary

Canyon Sands ~
Drilling Fractures
Avg N33°E

S S S e S SOt -y Wy 9

Core Bit

Core

1\ \\ Borehole Wall

. \ .\\-/,

Bit-Induced

" Stress Array Lines

From:
Lorenz and Finley, 1988




Open-hole Injection/Microfracturing

Two OHST’s Orientation of Observed Orientation of Imaged

Performed in Induced Fractures: Induced Fractures:

Canyon Sands N35°E N3SE " (h = 26 i)
N37°E N36°E :(h =19 1)




- Acoustic Velocity Anisotropy

Fastest Velocity

Stress Relief Maximum Stress

Cracks
\

Slowest Velocity ' - Exaggerated
Strain Relaxation

Minimum Stress

Core Sample Averagfe Moo
o}

Canyon Sands Samples
N34°E




BOREHOLE SEISMIC MONITORING
AND DATA ACQUISITION

RECORDING
LOCATIONS

j TRIAXIAL
A GEOPHONE/GYRO TOOL

HYDRAULIC
FRACTURE

TREATMENT - INDUCED
SEISMIC SIGNALS

™1 . ™y

DATA ACQUISITION
WIRELINE TRUCKS

DATA ANALYSIS:
N40°E
N85°E




FRACTURE AZIMUTH RESULTS
PHILLIPS AND ENRON CO-OP WELLS

TECHNIQUE AVG. AZIMUTH

PPCo EOG

OVER-CORED OHST 035° 037°
IMAGED OHST FRACTURE 035° 036°
DRILLING-INDUCED FRACTURES 035° 033°
BOREHOLE BREAKOUTS R 046 °
ACOUSTIC ANISOTROPY 034° gt =

ANELASTIC STRAIN RECOVERY  095°  ---

CMR SURVEY 040°% 085° __._
ORIENTED POST-FRAC GR ?




Fracture Azimuth in the Canyon Sands
Conclusions

v Knowledge of hydraulic fracture azimuth becomes
increasingly important as well spacing decreases and
this information can be used to design well placement

v Multiple techniques indicate that hydraulic fracture
azimuth in the Canyon Sands is within the N3OE to
N40OE range

v The techniques applied are all commercially available
and the methodology can be applied to any project
where knowledge in in situ siress directions is
important




Techniques for Determining Subsurface
Stress Direction

e Core Based

e Borehole Based

e  Hydraulic Fracture Monitoring
 Regional Geologic Indicators

Hill, R.E., R.E. Peterson, N.R. Warpinski, J.C. Lorenz, L.W. Teufel, 1993, Techniques for
Determining Subsurface Stress Direction and Assessing Hydraulic Fracture Azimuth: Gas
Research Institute, Topical Report, GRI-93/0429, 133 p.

This report is available at the University of Houston's Natural Gas Supply Information
Center at the following address:
University of Houston
Dobrin Memorial Library
Houston, Texas 77204-4231
713/ 743-9158
Fax 713/743-9164



In Situ Stress Testing

Purposes
. To Characterize Vertical In Situ Stress Variations to Evaluate

Fracture Height Growth

. To Evaluate Which Zones to Perforate to Maximize Hydraulic
Fracture Coverage

. Use this Information to Improve Fracture Treatment Designs
Canyon Sanstone Stress Measurements

. 12 Intervals Tested — 3 OHST's and 9 CHST's

. Equally Distributed Between Sandstones and Shales

. OHST's — Overcore Created Fracture (Azimuth)
See Today's Core Display

¢  CHST's — Mechanically Easier and Less Expensive

Stress Test Results are summarized in GRI Topical Reports

Conclusions From Stress-Magnitude Studies

. OHST's and CHST's provide a means of determining in situ stress

. BHP measurements with DHSI are required to insure accurate data

. Stress measurements are required to calibrate log predictions

. Detailed, representative stress profiles can be generated

. Stress contrasts of 800 to 1,100 psi exist between sandstone and shale
o Despite stress contrast fracture containment is not sure because shale

layers are thin

o Used with 3-D fracture models, stress profiles are helpful for fracture
treatment design



SUMMARY OF DATA ACQUISTION
PHILLIPS PETROLEUM WARD C-11
Block B; HE.&W.T. RR Co. Survey
Sutton Co., TX

Conventional Core
- 5,515 to 6,422ft (201 ft; 128 ft oriented)
- Core Photographs
Core Analyses
- Routine petrophysical analyses (stressed porosity and permeability, fluid saturations, grain
density on 199 samples)
- Special analyses (electrical properties, mechanical properties, relative permeability)
- Anelastic strain recovery (8 samples)
- Acoustic anisotropy data (5 samples)
- Detailed core descriptions (lithology and fractures)
Thin section petrography (26 samples)
Openhole Stress Tests (5,429 ft; 6,050 ft)
- Fracture closure pressure data
Wireline Logs (Openhole)
- Spectral Density/Dual Spaced Neutron/Compensated Spectral Gamma Ray; Circumferential
Acoustic Scanning Tool/Oriented Caliper/Sequential Formation Tester (HLS)
- Electromagnetic Propagation Tool/Microlog/Dual Laterolog/MicroSFL/Digital Sonic (SWS)
Casedhole Stress Tests
- Bottomhole pressure data; 6,519 ft; 6,569 ft; 6,619 ft; 6,709 ft (lower Canyon Sands interval)
- Bottomhole pressure data; 6,367 ft; 6,410 ft (middle Canyon Sands interval)
Fracture Fluids Laboratory Tests
- Conductivity, regained permeability, static fluid loss data of Canyon Sands core using 4 frac
fluid types
Well Tests
- Pre-frac flow and pressure buildup test data in the lower Canyon Sands interval (6,338 -
6,651 ft)
- Pre-frac/post-frac flow and pressure buildup test in the middle Canyon Sands interval (6,260 -
6,651 ft)
Minifrac and Fracture Treatment Monitoring
- Main frac treatment data (time, injection rate, bottomhole pressure, proppant concentration)
from the lower Canyon Sands completion interval (6,338 - 6,651 ft)
- Minifrac/main frac treatment data from the middle Canyon Sands completion interval (6,260 -
6,651 ft)
Fracture Diagnostics
- Continuous Microseismic Radiation survey (Teledyne Geotech) for fracture height and
azimuth in the middle Canyon Sands completion interval
- R/A logging, temperature logging data for correlative fracture height data in the middle
Canyon Sands completion interval
- RotaScan (oriented gamma ray data) in middle Canyon Sands interval - HLS
- Overcored and imaged open-hole stress test induced fracture (see core and log data)



SUMMARY OF DATA ACQUISTION
ENRON OIL & GAS SAWYER A-144 NO. 5
Sec. 144, Block C; H.T.&E RR Co. Survey
Sutton Co., TX

Conventional Core
- 5,275 to 6,580 ft (305 ft, 27.5 ft oriented)
- Core photographs
Core Analyses
- Routine (stressed porosity and permeability, fluid saturations, grain density)
- Detailed fracture descriptions (lithology and fractures)
Openhole Stress Test (5,957 ft)
- Bottomhole pressure data
- Induced fracture overcored
Wireline Logs (Openbhole - air filled)
- High Resolution Temp/Spectral Density/Dual Spaced Epithermal Neutron/Compensated
Spectral Gamma Ray/Dual Induction/Sidewall Neutron (HLS)
Wireline Logs (Openhole - fluid filled)
- Spectral Density/Dual Spaced Neutron/Compensated Spectral GR (HLS)
- Dual Laterolog/MicroSFL/Electromagnetic Propagation/Microlog Formation
Microscanner/Digital Array Sonic/Repeat Formation Tester (SWS)
Casedhole Stress Tests
- Bottomhole pressure data; 6,384 - 86ft; 6,492 - 94ft; 6,594 - 96ft (lower Canyon Sands
interval)
Well Tests
- Pre-frac/post-frac flow and pressure buildup test data; 6,375 - 6,518 ft (lower Canyon Sands)
- Pre-frac/post-frac flow and pressure buildup test data; 5,921 - 6,212 ft (middle Canyon Sands)
- Pre-frac/post-frac flow and pressure buildup test data; 5,281 - 5,439 ft (upper Canyon Sands)
Minifrac and Fracture Treatment Monitoring
- Minifrac/main frac treatment data (injection rates, pressures, time proppant concentration);
lower Canyon Sands completion interval
- Minifrac/main frac treatment data (injection rates, pressures, time proppant concentration),
middle Canyon Sands completion interval
- Minifrac/main frac treatment data (injection rates, pressures, time proppant concentration);
upper Canyon Sands completion interval
Fracture Diagnostics
- R/A logging, temperature logging data for fracture height data in the lower Canyon Sands
completion interval
- Overcored and logged open-hole stress test fracture (see core data, log data)
Injection Rate/Crossflow Experiment
- relative injection rate data in intervals having different stresses, measured by spinner/pressure
tool; upper Canyon Sands completion interval
- crossflow data between perforated intervals using spinner/pressure tool; upper Canyon Sands
completion interval



REVIEW OF OPERATOR
RESULTS

and

IDENTIFICATION OF
DEVELOPMENT CHALLENGES



SURVEY OF CANYON OPERATORS

e Active in Both Sonora and Ozona

e Classify Canyon as a Development Play
e 6 to 40 Years Canyon Experience

10 to 50 Canyon Wells per Year

e Optimistic About Future

— Low Drilling Costs
— Abundant Reserves
— Drilling Opportunities

Gr'1/BEG QAa6105c(a)



CANYON GEOLOGY
OPERATOR’S PERSPECTIVE

e Submarine-Fan Depositional Environment

e Geologic Research Primary Component of
Development Strategies

 Pay Zones ldentified with Neutron/Density and
Temperature Logs

 Sandstone Thickness Maps Are Basic Geological
Data For Well Location

e Innovative Mapping Techniques also Used

Gril/BEG QAa6105c(b)



OPERATORS IDENTIFY
GEOLOGIC CHALLENGE

Predicting Sandstone Distribution
Predicting Permeability Distribution
Documenting Reservoir Architecture
Dealing with Sand/Shale Lamination
Recognizing Contributing Pay

Predicting Reservoir Fluids

Gari/BEG QAa6105¢(c)
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