Taking CO₂ EOR offshore

Subsea well stream processing potential enabling solution / Ship transport options

Austin TX, April 2016

By Pål H. Nøkleby (Aker Solutions) / Filip Neele (TNO)

Presented by Philip Ringrose (Statoil)
Available Resources on the NCS for CO2 EOR

Increased Recovery Potential:

2002: Gullfaks, Heidrun; ~ 5 – 7 %

2005: NPD; ~ 5 – 7 %

2014: Lindeberg; ~ 7 %

2014: This work; 5 – 9 %
Challenges Related to Offshore CO2 EOR

- No CO$_2$ supply chain established – limited availability – **assumed need for big volumes over time**
- Non-optimized well locations
- No existing pipelines
- Facilities and wells not corrosion resistant
- **Limited weight and space available for topsides separation**
 - Extremely costly retrofits or additional installations
- High cost of CO2 at wellhead
- Higher cost level than onshore
 - Offshore operation costs
 - **Loss of production due to shut down in retrofit period**
- Logistics between onshore CO$_2$ source and offshore
Available Subsea processing building blocks:

- Subsea multiphase cooler
- Subsea gas compressor
- Subsea gas/liquid separator
- Subsea liquid/liquid separator
- Subsea de-sanding equipment
- Subsea produced water de-oiling equipment
- Liquid pump
- Multiphase pump
- Subsea control systems
- Subsea power solutions

Subsea process system building blocks
Two important subsea building blocks

Compression System

2010 – 2015 Åsgard:
- 21 MSm³/d flow rate
- 2 x 11.5 MW compressor power
- 300 m water depth
- 40 km step-out distance
- Topside Variable Speed Drives, Circuit breakers and UPS
- Delivered by Aker Solutions

Compact membrane packing

- Onshore stacking not feasible subsea
- Compact packing arrangement developed by AKSO
Some Subsea processing arrangements

Simplest arrangement:
- Separation and reinjection of HC gas and CO2 use qualified subsea compressor system

More advanced arrangement:
- Gas separation
- Reinjection enriched CO2

Advanced arrangement:
- Gas separation
- Water separation
- Reinjection enriched CO2
A subsea separation solution for the well stream
Key Data Medium – Large Scale Generic CO2 EOR Project

- Reservoir simulations on actual reservoir – up scaled
- Increased recovery factor: ~ 7 %
- Production period: 8 years
- CO2 supply:
 - 3.5 Mt/y over a 3 years period
 - Separation system allows recirculation
- CO2 sources and transportation
 - CO2 from onshore plants
 - Onshore conditioning
 - Shuttle tankers from point sources
 - Injection vessel
 - Subsea injection system
Principles and Cases Subject to Cost Estimation

- Case 2 – Commercial scale – ship transportation

- Case 3 – CO2 supply from European trunk line

- General
 - CO2 costs as long term unit costs
 - AKSO data base and external references
 - New key components estimated as expected long term costs
 - Incremental revenue and costs
Offshore CO2 EOR Challenges - Mitigations

- No CO2 supply
 - Pipeline
 - Ship supply
- Space limitations on platforms
 - Subsea installation
- Weight limitations
 - Subsea installation
- Power availability
 - Less power needed than gas injection, heavier fluid
- Corrosion issues
 - 13% Cr needed – standard for subsea wells
- High cost when modifications done topsides
 - Short/no downtime with subsea installation
- HSE concern by sudden topside release
 - No issue subsea
Other Aspects Subsea Technology Concept

- Reduced installation costs – subsea separation
- Overlap of EOR production with conventional oil production
- Small subsea facilities serving segments in large reservoir
- Facilities available for injection of CO2 for permanent storage as a final CCS stage
- Retrievable modules – limited operational time - reuse
SUMMARY

- CO2 used for increasing value through added oil production seen as a mandatory step towards CCS
- CO2 EOR combines value creation with GHG abatement
- New technology concepts provides commercially attractive solutions
CO₂ TRANSPORT BY SHIP: FLEXIBILITY FOR STORAGE AND EOR

› Offshore CO₂ storage or CO₂-EOR in Europe
 › Demand driven – but only if there is sufficient supply
 › Typical CO₂-EOR project: ~5 Mtpa
 › Typical commercial CO₂ capture project: 1-4 Mpta
› Transport by ship offers flexibility in connecting supply and demand of CO₂

› Is ship transport feasible?
 › Heating & compression on board ship
 › Offloading / injection rates

Distances from Rotterdam: 400, 800 and 1200 km
SHIP TRANSPORT RESERVOIRS

<table>
<thead>
<tr>
<th></th>
<th>Depth (m)</th>
<th>Unit cost €/tCO2</th>
<th>Capacity Mtpa</th>
<th>Number of ships</th>
<th>Utilisation %</th>
<th>CAPEX M€</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saline Fm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good quality</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reservoir</td>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saline Fm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High quality</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reservoir</td>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HC reservoir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depleted 80%</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HC reservoir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depleted 50%</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Saline formations at depths 1-4 km**
 - Good quality (100 mD)
 - High quality (1000 mD)

- **Depleted hydrocarbon reservoirs, same depths**
 - 80% depleted
 - 50% depleted

Injection rates limited by:
- reservoir pressure,
- flow-induced vibrations in well,
- thermal effects in reservoir,
- hydrate formation,
- offloading pressure
Transport distance 400 km, ship capacity 30 kt and offloading into temporary storage:
- Unit cost 14 – 21 €/tCO₂
- Capacity 2.6 – 4.7 Mtpa

<table>
<thead>
<tr>
<th></th>
<th>Depth (m)</th>
<th>Unit cost €/tCO₂</th>
<th>Capacity Mtpa</th>
<th>Number of ships</th>
<th>Utilisation %</th>
<th>CAPEX M€</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saline Fm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good quality reservoir</td>
<td>1000</td>
<td>15,9</td>
<td>4,5</td>
<td>3</td>
<td>68</td>
<td>394</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>15,4</td>
<td>3,6</td>
<td>2</td>
<td>93</td>
<td>308</td>
</tr>
<tr>
<td></td>
<td>3000</td>
<td>18,5</td>
<td>3,0</td>
<td>2</td>
<td>85</td>
<td>308</td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td>21,0</td>
<td>2,6</td>
<td>2</td>
<td>81</td>
<td>308</td>
</tr>
<tr>
<td>Saline Fm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High quality reservoir</td>
<td>1000</td>
<td>15,2</td>
<td>4,7</td>
<td>3</td>
<td>70</td>
<td>394</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>15,4</td>
<td>3,6</td>
<td>2</td>
<td>93</td>
<td>308</td>
</tr>
<tr>
<td></td>
<td>3000</td>
<td>18,5</td>
<td>3,0</td>
<td>2</td>
<td>85</td>
<td>308</td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td>21,0</td>
<td>2,6</td>
<td>2</td>
<td>81</td>
<td>308</td>
</tr>
<tr>
<td>HC reservoir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depleted 80%</td>
<td>1000</td>
<td>15,1</td>
<td>4,7</td>
<td>3</td>
<td>70</td>
<td>394</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>13,2</td>
<td>4,3</td>
<td>2</td>
<td>100</td>
<td>308</td>
</tr>
<tr>
<td></td>
<td>3000</td>
<td>14,6</td>
<td>3,8</td>
<td>2</td>
<td>95</td>
<td>308</td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td>16,4</td>
<td>3,3</td>
<td>2</td>
<td>90</td>
<td>308</td>
</tr>
<tr>
<td>HC reservoir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depleted 50%</td>
<td>1000</td>
<td>15,1</td>
<td>4,7</td>
<td>3</td>
<td>70</td>
<td>394</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>13,5</td>
<td>4,2</td>
<td>2</td>
<td>98</td>
<td>308</td>
</tr>
<tr>
<td></td>
<td>3000</td>
<td>15,9</td>
<td>3,5</td>
<td>2</td>
<td>91</td>
<td>308</td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td>19,4</td>
<td>3,3</td>
<td>2</td>
<td>89</td>
<td>308</td>
</tr>
</tbody>
</table>
CO₂ TRANSPORT BY SHIP: CONCLUSIONS

- Direct injection from ship or to temporary storage (lowest cost) is feasible
- Unit cost 14 – 28 €/tCO₂, depending on ship size, distance, etc.
- Rates 2.5 – 4.7 Mtpa, with ships 30-50 kt, depending on reservoir depth, etc.
Acknowledgements

AKER:
■ CLIMIT/Gassnova for funding the project
■ Statoil for funding, performing reservoir simulations and valuable discussions
■ Centre for Integrated Petroleum Research, CIPR, for valuable simulations and discussions

TNO:
■ CATO for funding the project
■ ENGIE, RWE and ROAD for co-funding the project