Gas and renewables: Policies, integration, and costs.

Ross Baldick
Department of Electrical
and Computer Engineering
The University of Texas at Austin

Outline

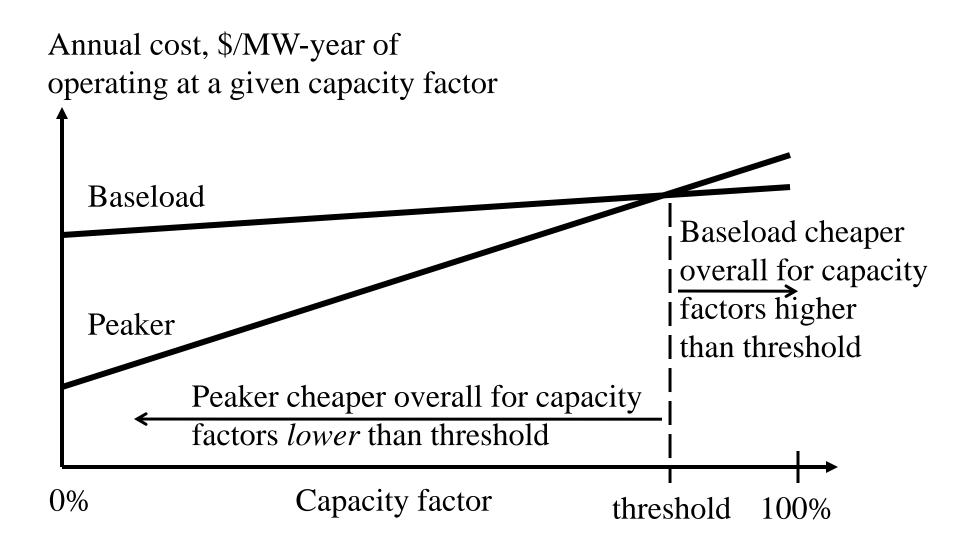
- Given policy of promoting intermittent renewables, what are implications for:
 - Technical grid integration of renewables,
 - Portfolio of thermal resources,
 - Storage.
- Does policy of promoting renewables make sense:
 - Cost and benefit estimates for new wind in ERCOT,
 - Re-evaluation of policies.

Technical aspects of integration of intermittent renewables.

- Wind is variable (cannot be bidden) and intermittent (cannot be *fully* predicted) at various timescales:
 - Improved forecasting continues to reduce lack of predictability,
 - "Residual" thermal generation for "net load" must provide increased "reserves" to compensate for (among other things) intermittency:
 - Thermal resources generate less energy on average,
 - Requires nearly as much residual thermal capacity as without wind.

Technical aspects of integration of intermittent renewables, contd.

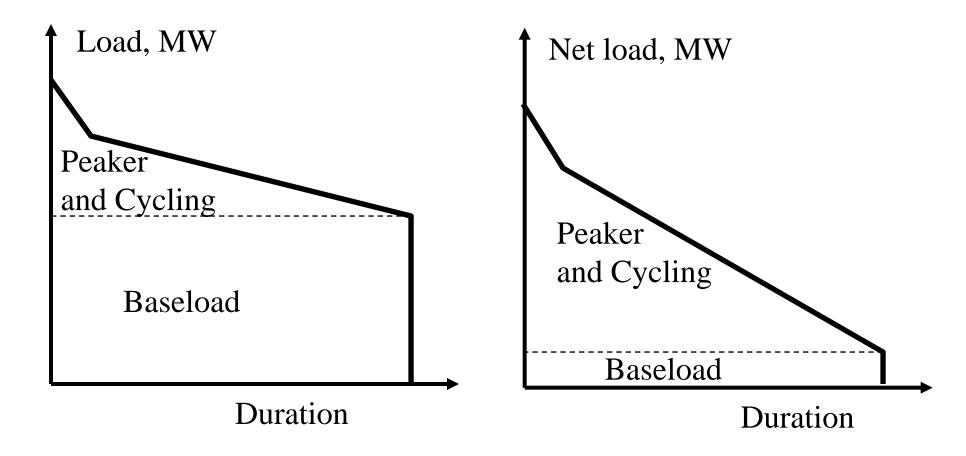
- On-shore North American wind resources are typically far from demand centers:
 - Transmission system requires significant augmentation to deliver wind power,
 - Intermittent resources at far end of transmission system pose "stability" problems.


Technical aspects of integration of intermittent renewables, contd.

- On shore North American wind resources produce on average as much or more off-peak as on-peak:
 - Off-peak wind generation often results in residual thermal generation operating at technical or economic minimum off-peak, (and lower operating efficiencies),
 - Residual thermal system must meet larger morning ramp-ups and evening ramp-downs of net load and may necessitate more "ramping reserves."

Portfolio of thermal resources.

- In short-term, existing thermal will run at a lower capacity factor and off-peak prices will be lower (even negative):
 - Coal or wind setting price off-peak instead of gas,
 - Already see this in ERCOT.
- In longer-term, "economically adapted" generation portfolio would have increased fraction of peaker and cycling capacity:
 - Net load-duration issues,
 - Need to provide more reserves.


Portfolio costs: Notional annualized operating costs versus capacity factor.

Economically adapted portfolio with more wind.

Load-duration without wind.

Net Load-duration with wind. Net load = load minus wind.

Incentives for the right portfolio to match wind.

- Current market prices and expectations of forward prices in ERCOT do not support new peaker entry:
 - Prices not high enough on average under tight supply conditions for profitable peaker entry,
- Some baseload projects are apparently going ahead in ERCOT and in Midwest.
- We might not be getting the right types of capacity built to match the wind, even if total capacity is apparently adequate in coming years.

Storage.

- Typical storage capacity costs are currently well over \$1000/kW and range up to \$4000/kW:
 - Greatly exceeds cost of peaking gas fired generation,
 - Dedicated storage unlikely to be competitive against peaker capacity until costs of storage reduced significantly.
 - "Free" storage such as plug-in hybrids, charged during high wind, have potential economic role.

- ERCOT is embarking on large expansion in transmission capacity to allow for 11 GW expansion in wind:
 - "competitive renewable energy zone" transmission at cost of around \$5 billion,
 - Approximately \$20/MWh average cost of transmission resources for wind.

- Typical unsubsidized cost of wind energy is around US\$80/MWh,
- Assume US\$20/MWh incremental transmission for wind in ERCOT,
- Assume US\$5/MWh to US\$10/MWh proxy to cost of intermittency,
- Total is about US\$105/MWh to US\$110/MWh.
- Average balancing energy market price in ERCOT is around US\$50/MWh to \$60/MWh.
- New wind adds about US\$50/MWh to costs.

- US Congressional Budget Office estimates \$15 per metric ton of CO₂ emissions (\$13-14 per US ton) as initial price under House Bill 2454.
- Ceilings discussed at \$30 to \$35/US ton.
- Assuming 10,000 Btu/kWh heat rate, a little over 1US ton of CO₂ is produced per MWh of coal-fired electricity production, less for gas:
 - Around at most \$15 to \$35 of CO₂ is produced per MWh, given House Bill 2454 valuations.

- Wind is often touted as having various benefits, but is not worthwhile for greenhouse benefits alone.
- Suggests need to re-evaluate policies that directly promote renewables versus policies that aim to reduce greenhouse emissions.

Summary

- Given policy of promoting intermittent renewables, what are implications for:
 - Technical grid integration of renewables,
 - Portfolio of thermal resources,
 - Storage.
- Does policy of promoting renewables make sense:
 - Cost and benefit estimates for new wind in ERCOT,
 - Re-evaluation of policies.