WATER RESOURCES RESEARCH, VOL. 45, WO0AOQ0, doi:10.1029/2009WR007937, 2009

Click
Here

Full
Article

Introduction to special section on Impacts
of Land Use Change on Water Resources

David A. Stonestrom,' Bridget R. Scanlon,” and Lu Zhang®
Received 3 March 2009; accepted 1 April 2009; published 17 June 2009.

[11 Changes in land use have potentially large impacts on water resources, yet quantifying
these impacts remains among the more challenging problems in hydrology. Water, food,
energy, and climate are linked through complex webs of direct and indirect effects and
feedbacks. Land use is undergoing major changes due not only to pressures for more
efficient food, feed, and fiber production to support growing populations but also due to
policy shifts that are creating markets for biofuel and agricultural carbon sequestration.
Hydrologic systems embody flows of water, solutes, sediments, and energy that vary even in
the absence of human activity. Understanding land use impacts thus necessitates integrated
scientific approaches. Field measurements, remote sensing, and modeling studies are
shedding new light on the modes and mechanisms by which land use changes impact water
resources. Such studies can help deconflate the interconnected influences of human actions

and natural variations on the quantity and quality of soil water, surface water, and

groundwater, past, present, and future.
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1. Introduction

[2] Given that land use impacts on carbon budgets have
been studied for decades [e.g., Lieth and Whittaker, 1975;
Vitousek et al., 1986; Haberl et al., 2007], surprisingly large
uncertainties bracket even the direct effects of land use
changes on water resources [e.g., National Research Council
(NRC), 2006, p. 25]. Irrigated agriculture consumes up to
90% of'the world’s fresh water supplies [Shiklomanov, 2000],
with estimated amounts highly sensitive to land use [Wisser
et al., 2008].

[3] It is now recognized that land use changes have
substantial effects on key atmospheric elements of the
hydrologic cycle, including evapotranspiration, precipita-
tion, and land-surface temperatures [Kabat et al., 2004;
Feddema et al., 2005; Juang et al., 2007, Kueppers et al.,
2007]. Insofar as widespread land use changes can strongly
modify regional weather patterns, projections of future
changes in the inseparable realms of climate and water
resources must consider land use as an important factor
[Foley et al., 2005; NRC, 2005; Pielke, 2008].

[4] Widespread declines in water levels have occurred in
critical aquifer systems, including the High Plains of the
United States [McGuire, 2007], the Murray-Darling Basin
of southeastern Australia [Commonwealth Scientific and
Industrial Research Organisation, 2008], and the Wailapally
area of India [Reddy et al., 2009]. Overdrafting of ground-
water resources is a growing problem throughout the world
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[Konikow and Kendy, 2005], yet the underlying mechanisms
of groundwater supply over broad areas, such as release
of water from storage [Konikow and Neuzil, 2007] and
recharge through deep unsaturated zones [Scanlon et al.,
2006; Stonestrom et al., 2007], have only recently been
examined.

[s] Land use changes can affect water quality, for exam-
ple, by introduction of nitrogen compounds and other bio-
logically active solutes [e.g., Schlesinger et al., 2006;
Schlesinger, 2009]. Land use changes can also affect water
quality by large-scale alteration of sediment budgets [Hassan
et al., 2008; Valentin et al., 2008]. Additional water quality
impacts of land use change include salinization of soil water,
groundwater, and surface water [Allison et al., 1990; Schoups
et al., 2005].

[6] Land-use impacts are not limited to irrigated areas.
Dryland agriculture can have large effects on water resources,
increasing recharge and flushing accumulated salts to rivers
[Cook et al., 2001; Scanlon et al., 2005]. Impacts from
dryland agricultural areas, which currently produce about
60% of the world’s food supply, are likely to increase as
(1) irrigation becomes increasingly constrained by water
availability, (2) newly developed dryland cultivars replace
their less drought tolerant counterparts, and (3) dryland
production of biofuels and replanting of formerly irrigated
land for carbon sequestration both undergo expansion [NRC,
1996; 2008]. Urbanization affects water resources locally,
impacting water quality [Randhir, 2003; Sickman et al., 2007],
storm discharge [Hollis, 1975], and groundwater recharge
[Ku and Simmons, 1985; Filippone and Leake, 2005].

2. Challenges, Approaches, and Progress

[7] Isolating the impacts of land use change on water
resources is problematic. Reasons for the difficulty include
the wide range in time scales over which impacts from land
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use changes propagate through hydrologic systems, the
confounding effects of climate and weather, and the fact that
large-scale observational field studies often lack controls,
making it difficult to ascribe temporal changes to causal
mechanisms. Biophysical responses such as changes in
evapotranspiration occur over time scales of minutes to
hours, whereas plant growth and species succession occur
over days to decades. Large groundwater systems respond to
perturbations in land use and climate more slowly. Studies
using stable isotopes and other tracers from unsaturated-zone
profiles have shown that groundwater systems in arid regions
are still responding to climatic shifts that occurred at the end
of the Pleistocene [Walvoord et al., 2004].

[8] The studies presented in this special section apply a
variety of observational, modeling, and conceptual techniques
to evaluate water resource impacts of land use change at sites
located on six continents (Figures 1 and 2). Several studies
combine vegetation and water balance models to simulate
watershed dynamics for past and projected climates and land

Land Use Changes Impacts Approaches (Models)
To irrigated agric. =~ SM quantity ~ UZ geochemistry (PHREEQC)
To dryland agric. SM quality Biogeochemical (NLOSS)
To tree plantations ~ SW quantity GW flow (MODFLOW)
To biofuels SW quality SW flow (DTVGM)

To urban/industrial
uses
To conservation

Sed. transport  Watershed (MIKE-SHE; SWAT)
GW quantity Green-blue apprortioning (LPJmL)
GW quality Climate (HadCM2, HIRHAM, etc.)

Figure 2. Considered land use changes, impacts on water
resources, and analytical approaches used by the studies in
the special section. SM is soil moisture, SW is surface water,
GW is groundwater, and UZ is unsaturated zone.

use scenarios. Other studies examine specific linkages, such
as sulfur dynamics in viticultural systems and changes in soil
and stream chemistry due to afforestation. The largest cluster
of studies considers watershed dynamics (streamflow and
sediment transport) in portions of northern China that have
experienced large changes in land use, together with periods
of severe drought. Such studies help explain the mechanisms
and interactions that led to increasingly frequent zero-flow
conditions along the Yellow River during the latter half of the
twentieth century. Several studies are global in scope, for
example developing models that can help manage “green
water” (plant-transpirable water) in addition to “blue water”
(surface water and groundwater) to meet increasingly press-
ing demands and constraints [cf. Smil, 2008].

3. Conclusion

[¢] Land use and climate change are inexorably linked
through the hydrologic cycle. The papers in this special
section apply a variety of tools to past, present, and future
time frames to understand the water resources impacts of land
use change from watershed to global scales. All share a
common thread in addressing one of the most fundamental
questions about human sustainability.
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