

Natural gas: The fracking fallacy

The United States is banking on decades of abundant natural gas to power its economic resurgence. That may be wishful thinking.

Mason Inman¹

03 December 2014

PDF Rights & Permissions

A rig drills for natural gas using hydraulic-fracturing methods in a Pennsylvania shale formation.

When US President Barack Obama talks about the future, he foresees a thriving US economy fuelled to a large degree by vast amounts of natural gas pouring from domestic wells. "We have a supply of natural gas that can last America nearly 100 years," he declared in his 2012 State of the Union address.

Obama's statement reflects an optimism that has permeated the United States. It is all thanks to fracking — or hydraulic fracturing — which has made it possible to coax natural gas at a relatively low price out of the fine-grained rock known as shale. Around the country, terms such as 'shale revolution' and 'energy abundance' echo through corporate boardrooms.

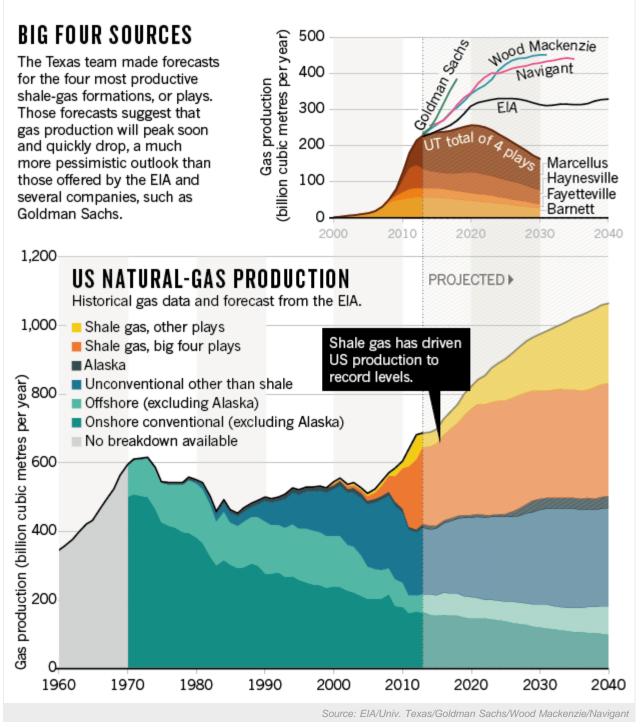
Companies are betting big on forecasts of cheap, plentiful natural gas. Over the next 20 years, US industry and electricity producers are expected to invest hundreds of billions of dollars in new plants that rely on natural gas. And billions more dollars are pouring into the construction of export facilities that will enable the United States to ship liquefied natural gas to Europe, Asia and South America.

Top picks from nature news

- Al Gore's dream spacecraft gears up for launch
- Hidden hurdle for women in science
- Science and satire: The Paris attacks

All of those investments are based on the expectation that US gas production will climb for decades, in line with the official forecasts by the US Energy Information Administration (EIA). As agency director Adam Sieminski put it last year: "For natural gas, the EIA has no doubt at all that production can continue to grow all the way out to 2040."

But a careful examination of the assumptions behind such bullish forecasts suggests that they may be overly optimistic, in


part because the government's predictions rely on coarse-grained studies of major shale formations, or plays. Now, researchers are analysing those formations in much greater detail and are issuing more-conservative forecasts. They calculate that such formations have relatively small 'sweet spots' where it will be profitable to extract gas.

The results are "bad news", says Tad Patzek, head of the University of Texas at Austin's department of petroleum and geosystems engineering, and a member of the team that is conducting the in-depth analyses. With companies trying to extract shale gas as fast as possible and export significant quantities, he argues, "we're setting ourselves up for a major fiasco".

That could have repercussions well beyond the United States. If US natural-gas production falls, plans to export large amounts overseas could fizzle. And nations hoping to tap their own shale formations may reconsider. "If it begins to look as if it's going to end in tears in the United States, that would certainly have an impact on the enthusiasm in different parts of the world," says economist Paul Stevens of Chatham House, a London-based think tank.

BATTLE OF THE FORECASTS

Production of natural gas in the United States is climbing rapidly, and the US Energy Information Administration (EIA) predicts long-term growth. But studies by the University of Texas (UT) challenge that forecast.

The idea that natural gas will be abundant is a sharp turnaround from more pessimistic outlooks that prevailed until about five years ago. Throughout the 1990s, US natural-gas production had been stuck on a plateau. With gas supplying one-quarter of US energy, there were widespread worries that supplies would shrink and the nation would become dependent on imports. The EIA, which collects energy data and provides a long-term outlook for US energy, projected as recently as

2008 that US natural-gas production would remain fairly flat for the following couple of decades.

Then the shale boom caught everyone by surprise. It relied on fracking technology that had been around for decades — but when gas prices were low, the technology was considered too costly to use on shale. In the 2000s, however, prices rose high enough to prompt more companies to frack shale formations. Combined with new techniques for drilling long horizontal wells, this pushed US natural-gas production to an all-time high, allowing the nation to regain a title it had previously held for decades: the world's top natural-gas producer.

Rich rocks

Much of the credit for that goes to the Marcellus shale formation, which stretches across West Virginia, Pennsylvania and New York. Beneath thickly forested rolling hills, companies have sunk more than 8,000 wells over several years, and are adding about 100 more every month. Each well extends down for about 2 kilometres before veering sideways and snaking for more than a kilometre through the shale. The Marcellus now supplies 385 million cubic metres of gas per day, more than enough to supply half of the gas currently burned in US power plants.

A substantial portion of the rest of the US gas supply comes from three other shale plays — the Barnett in Texas, the Fayetteville in Arkansas and the Haynesville, which straddles the Louisiana–Texas border. Together, these 'big four' plays boast more than 30,000 wells and are responsible for two-thirds of current US shale-gas production.

The EIA — like nearly all other forecasters — did not see the boom coming, and has consistently underestimated how much gas would come from shale. But as the boom unfolded, the agency substantially raised its long-term expectations for shale gas. In its *Annual Energy Outlook 2014*, the 'reference case' scenario — based on the expectation that natural-gas prices will gradually rise, but remain relatively low — shows US production growing until 2040, driven by large increases in shale gas.

The EIA has not published its projections for individual shale-gas plays, but has released them to *Nature*. In the latest reference-case forecast, production from the big four plays would continue rising quickly until 2020, then plateau for at least 20 years. Other shale-gas plays would keep the boom going until 2040 (see 'Battle of the forecasts').

Petroleum-industry analysts create their own shale-gas forecasts, which generally fall in the neighbourhood of the EIA assessment. "EIA's outlook is pretty close to the consensus," says economist Guy Caruso of the Center for Strategic and International Studies in Washington DC, who is a former director of the agency. However, these consultancies rarely release the details behind their forecasts. That makes it difficult to assess and discuss their assumptions and methods, argues Ruud Weijermars, a geoscientist at Texas A&M University in College Station. Industry and consultancy studies are "entirely different from the peer-reviewed domain", he says.

To provide rigorous and transparent forecasts of shale-gas production, a team of a dozen geoscientists, petroleum engineers and economists at the University of Texas at Austin has spent more than three years on a systematic set of studies of the major shale plays. The research was funded by a US\$1.5-million grant from the Alfred P. Sloan Foundation in New York City, and has been appearing gradually in academic journals^{1, 2, 3, 4, 5} and conference presentations. That work is the "most authoritative" in this area so far, says Weijermars.

If natural-gas prices were to follow the scenario that the EIA used in its 2014 annual report, the Texas team forecasts that production from the big four plays would peak in 2020, and decline from then on. By 2030, these plays would be producing only about half as much as in the EIA's reference case. Even the agency's most conservative scenarios seem to be higher than the Texas team's forecasts. "Obviously they do not agree very well with the EIA results," says Patzek.

The main difference between the Texas and EIA forecasts may come down to how finegrained each assessment is. The EIA breaks up each shale play by county, calculating an average well productivity for that area. But counties often cover more than 1,000 square

kilometres, large enough to hold thousands of horizontal fracked wells. The Texas team, by contrast, splits each play into blocks of one square mile (2.6 square kilometres) — a resolution at least 20 times finer than the EIA's.

Resolution matters because each play has sweet spots that yield a lot of gas, and large areas where wells are less productive. Companies try to target the sweet spots first, so wells drilled in the future may be less productive than current ones. The EIA's model so far has assumed that future wells will be at least as productive as past wells in the same county. But this approach, Patzek argues, "leads to results that are way too optimistic".

The high resolution of the Texas studies allows their model to distinguish the sweet spots from the marginal areas. As a result, says study co-leader Scott Tinker, a geoscientist at the University of Texas at Austin, "we've been able to say, better than in the past, what a future well would look like".

The Texas and EIA studies also differ in how they estimate the total number of wells that could be economically drilled in each play. The EIA does not explicitly state that number, but its analysis seems to require more wells than the Texas assessment, which excludes areas where drilling would be difficult, such as under lakes or major cities. These features of the model were chosen to "mimic reality", Tinker says, and were based on team members' long experience in the petroleum industry.

Alternative Futures

The lower forecasts from Texas mesh with a few independent studies that use simpler methods. Studies by Weijermars⁶, as well as Mark Kaiser⁷ of Louisiana State University in Baton Rouge and retired Geological Survey of Canada geologist David Hughes⁸, suggest that increasing production, as in the EIA's forecasts, would require a significant and sustained increase in drilling over the next 25 years, which may not be profitable.

Some industry insiders are impressed by the Texas assessment. Richard Nehring, an oil and gas analyst at Nehring Associates in Colorado Springs, Colorado, which operates a widely used database of oil and gas fields, says the team's approach is "how unconventional resource assessments should be done".

"We're setting ourselves up for a major fiasco." Patzek says that the EIA's method amounts to "educated guesswork". But he and others are reluctant to come down too hard. The EIA is doing "the best with the resources they have and the timelines they have", says Patzek. Its 2014 budget — which covers data collection and forecasting for all types of energy — totalled just

Related stories

- The uncertain dash for gas
- Fracking fracas
- Energy: A reality check on the shale revolution

More related stories Nore related stories

\$117 million, about the cost of drilling a dozen wells in the Haynesville shale. The EIA is "good value for the money", says Caruso. "I always felt we were underfunded. The EIA was being asked to do more and more, with less and less."

Patzek acknowledges that forecasts of shale plays "are very, very difficult and uncertain", in part because the technologies and approaches to drilling are rapidly evolving. In newer plays, companies are still working out the best spots to drill. And it is still unclear how tightly wells can be packed before they significantly interfere with each other.

Representatives of the EIA defend the agency's assessments and argue that they should not be compared with the Texas studies because they use different assumptions and include many scenarios. "Both modelling efforts are valuable, and in many respects feed each other," says John Staub, leader of the EIA's team on oil and gas exploration and production analysis. "In fact, EIA has incorporated insights from the University of Texas team," he says.

Yet in a working paper⁹ published online on 14 October, two EIA analysts acknowledge problems with the agency's methods so far. They argue that it would be better to draw upon high-resolution geological maps, and they point to those generated by the Texas team as an example of how such models could improve forecasts by delineating sweet spots. The paper carries a disclaimer that the authors' views are not necessarily those of the EIA — but the agency does plan to use a new approach along these lines when it assesses the Marcellus play for its 2015 annual report. (When *Nature* asked the authors of that paper for an on-the-record interview, they referred questions to Staub.)

Boom or bust

Members of the Texas team are still debating the implications of their own study. Tinker is relatively sanguine, arguing that the team's estimates are "conservative", so actual production could turn out to be higher. The big four shale-gas plays, he says, will yield "a pretty robust contribution of natural gas to the country for the next few decades. It's bought quite a bit of time."

Patzek argues that actual production could come out lower than the team's forecasts. He talks about it hitting a peak in the next decade or so — and after that, "there's going to be a pretty fast decline on the other side", he says. "That's when there's going to be a rude awakening for the United States." He expects that gas prices will rise steeply, and that the nation may end up building more gas-powered industrial plants and vehicles than it will be able to afford to run. "The bottom line is, no matter what happens and how it unfolds," he says, "it cannot be good for the US economy."

If forecasting is difficult for the United States, which can draw on data for tens of thousands of shale-gas wells, the uncertainty is much larger in countries with fewer wells. The EIA has commissioned estimates of world shale potential from Advanced Resources International (ARI), a consultancy in Washington DC, which concluded in 2013 that shale formations worldwide are likely to hold a total of 220 trillion cubic metres of recoverable natural gas¹⁰. At current consumption rates — with natural gas supplying one-quarter of global energy — that would provide a 65-year supply. However, the ARI report does not state a range of uncertainty on its estimates, nor how much gas might be economical to extract.

Such figures are "extremely dubious", argues Stevens. "It's sort of people wetting fingers and waving them in the air." He cites ARI's assessments of Poland, which is estimated to have the largest shale-gas resources in Europe. Between 2011 and 2013, the ARI reduced its estimate for Poland's most promising areas by one-third, saying that some test wells had yielded less than anticipated. Meanwhile, the Polish Geological Institute did its own study¹¹, calculating that the same

regions held less than one-tenth of the gas in ARI's initial estimate.

If gas supplies in the United States dry up faster than expected — or environmental opposition grows stronger — countries such as Poland will be less likely to have their own shale booms, say experts.

For the moment, however, optimism about shale gas reigns — especially in the United States. And that is what worries some energy experts. "There is a huge amount of uncertainty," says Nehring. "The problem is, people say, 'Just give me a number'. Single numbers, even if they're wrong, are a lot more comforting."

Nature 516, 28-30 (04 December 2014) | doi:10.1038/516028a

Access the data used in this feature at https://github.com/the-frack-lab/data/wiki/Nature-feature-%22The-Fracking-Fallacy%22

See Editorial page 7

References

1.	Patzek, T. W., Male, F. & Marder, M. Proc. Natl Acad. Sci. USA 110, 19731–19736 (2013).				
	+ Show context Article PubMed	ChemPort			
2.	Browning, J. <i>et al. Oil Gas J.</i> 111 (8), 62–73 (2013). + Show context	ISI			
3.	Browning, J. <i>et al. Oil Gas J.</i> 111 (9), 88–95 (2013). + Show context	ISI			
4.	Browning, J. <i>et al. Oil Gas J.</i> 112 (1), 64–73 (2014). + Show context ISI	ChemPort			
5.	Gülen, G., Browning, J., Ikonnikova, S. & Tinker, S. W. <i>Energy</i> 60 , 302–315 (2013). + Show context	Article ISI			
6.	Weijermars, R. Appl. Energy 124 , 283–297 (2014). + Show context	Article ISI			
7.	Kaiser, M. J. & Yu, Y. <i>Oil Gas J.</i> 112 (3), 62–65 (2014). + Show context	ISI			
8.	Hughes, J. D. <i>Drilling Deeper</i> (Post Carbon Institute, 2014); available at http://go.nature.com/o84xwk + Show context				
9.	Cook, T. & Van Wagener, D. Improving Well Productivity Based Modeling with the Incorporation of Geologic Dependencies (EIA, 2014); available at http://go.nature.com/dmwsdd + Show context				

- 10. US Energy Information Administration *Technically Recoverable Shale Oil and Shale Gas Resources* (EIA, 2013); available at http://go.nature.com/mqkmwx
 + Show context
- 11. Assessment of Shale Gas and Shale Oil Resources of the Lower Paleozoic Baltic–Podlasie–Lublin Basin in Poland First Report (Polish Geological Institute, 2012); available at http://go.nature.com/lw8fg7
 + Show context

Related stories and links

From nature.com

- The uncertain dash for gas 03 December 2014
- Fracking fracas

25 April 2013

- Energy: A reality check on the shale revolution 20 February 2013
- China slow to tap shale-gas bonanza
 20 February 2013
- The global energy challenge: Awash with carbon
 28 November 2012
- The Drillers Are Coming
 01 July 2010
- The shale revolution
 29 July 2009

From elsewhere

- US Energy Information Administration's Annual Energy Outlook
- University of Texas shale-gas studies
- Texas Bureau of Economic Geology

Author information

Affiliations

Mason Inman is a freelance writer in Oakland, California.

Author details

Mason Inman

For the best commenting experience, please login or register as a user and agree to our Community Guidelines. You will be re-directed back to this page where you will see comments updating in real-time and have the ability to recommend

comments to other users.

Comments for this thread are now closed.

9 comments

Subscribe to comments

JKH Hofweber • 2014-12-16 03:08 PM

@Robert Buntrock: It may be true that the API has "collected and disseminated extensive and accurate data for decades," but presenting an accurate representation of reality is more than merely collecting and disseminating data. Using the same line of reasoning, the Tobacco Institute also "collected and disseminated extensive and accurate data for decades," despite being "a collective industry organization supported by but not directly associated with any one tobacco company." Collection and dissemination bias has plenty of opportunity to infiltrate in the form of cherry-picking, ignoring, emphasizing, de-emphasizing and exaggerating facts. The question that must be asked is: what motives might the members of the organization have to fudge facts in order to suit monetary, political or other powerful incentives? In the case of the API, the TI, the NRA and scores of other lobbyist institutions, the answer is clear. This doesn't necessarily mean that these organizations are always subject to those motives, but it does mean that your argument is fallacious.

Robert Buntrock • 2014-12-12 01:34 PM

Interesting that in neither article is the work and data of the American Petroleum Industry (API) been cited. They have collected and disseminated extensive and accurate data for decades, probably the source of much of the data for the various metadata studies. It is a collective industry organization supported by but not directly associated with any one oil and gas company.

Regina Smith • 2014-12-12 01:11 AM

If you google for how much natural gas the United States uses a year, and for how much we have in reserve, you will find the data on the EIA website. According to the EIA, we have 13 years of natural gas as proven reserves. But Obama says we have enough to last "nearly 100 years". Where does that figure come from? That is using "unproven resources". Unproved resources are unknown as to if and when we can recover them. It will take a higher price and/or better technology to get them. If you divide current consumption into (proven reserves + unproven resources) you get 85 years. Is 85 years "nearly 100"? Probably not, but he is a politician after all. But then you have the issue of "current consumption". The US census people are predicting 100 million more Americans from immigration and their offspring over the next 50 years. Will you consume the same amount of natural gas as you boost your population? Probably not. Electric cars and plug-in hybrids have appeared in the last few years. As they get more popular, will we use the same amount of natural gas? Even using "unproven resources", you have to maintain natural gas consumption at current levels, to get 85 years, and it is naive or deceitful to use current consumption when you are aggressively seeking more people and more uses of electricity.

Dan Alger • 2014-12-07 08:41 PM

For the public policy concerns in which we are most interested, we would like to know if natural gas, a fuel cleaner than coal that has provided most of our electric power, will remain relatively inexpensive until we must wean ourselves from almost any use of CO2 producing fuels. 4-5 decades? Even if everything in the UT study holds true and even if we export significant amounts, almost surely. As an energy economist for most of my career (recently retired), I take all forecasts that attempt to say much of anything for beyond, say, two decades with a shakerful of salt. No one knows how much lower costs will be due to the technological changes that will occur over that period. (This is why EIA, and virtually everyone else, was so far off when making similar forecasts two decades ago.) Marcellus is so important, not just because it holds lots of inexpensive gas, but because it's quite close to major markets that are a long ways from other sources of gas. The other three of these four plays are also near major centers of demand. If these run out sooner than anticipated, the industry moves to other fields more and more removed from their customers (upstate NY, most of MI, the Baaken field centering in ND, much of the eastern side of the Rockies, and then huge areas of Canada), which then requires more investment in pipelines to get it to their customers. Gas delivered from these other fields will then be more expensive, but still economical enough to supply it. We will have a much bigger problem convincing people to leave natural gas unused if it remains cheap and significantly less expensive than solar, wind, or geothermal energy sources even after decades of support for renewables.

У f 🖉

Robert Buntrock • 2014-12-12 01:30 PM

Pipelines do have to be built for the more remote fields like ND's Bakken not only for better distribution but also to reduce wasteful and polluting flaring from the associated oil production fields.

Cris McConkey • 2014-12-05 06:38 PM

Also, see Shale Promises or Shale Spin? A Conversation with Deborah Rogers http://www.shaleshockmedia.org/2012/01/28/shale-promises-or-shale-spin-a-conversation-with-deborah-rogers/ (You can watch video stream, but download links do not work since blip.tv cancelled our account because they didn't like our content. That is what can happen when private companies go public and change their terms of service. This will be corrected once I upload to archive.org, a much safer place for archives. I just had to get that snub in about blip) Produced by Cris McConkey. Duration: 49:22 Camera by Cris McConkey & Bill Huston. January 20, 2012, 1st Unitarian Church of Ithaca, NY. Ms Deborah Rogers, a financial analyst turned entrepreneur, discusses the myths and realities of shale gas profitability with host Bill Podulka. Is shale gas drilling a financial bubble? Why has it swelled so much? How much longer can this go on, who gets hurt and who profits from the party? Ms Rogers began her financial career in London working in corporate finance and later served as a financial consultant with Merrill Lynch and Smith Barney. She then started an artisanal cheese making operation in Texas and became interested in natural gas when an energy company planned 12 high impact wells next to her dairy property.After exhaustive research, she began speaking out in 2009 about anomalies she had identified in the shale gas industry, including false expectations of the yields and profitability of many shale gas plays and over-hyping of investments therein.Ms Rogers is the founder of the Energy Policy Forum, a prominent web site and blog for

discussion on these and related matters. She was featured in a lengthy NY Times article by Ian Urbina on June 26, 2011 entitled Insiders Sound an Alarm Amid a Natural Gas Rush.

Cris McConkey • 2014-12-05 06:31 PM

Readers may be interested in this video: Prospects for Shale Gas in New York http://www.shaleshockmedia.org/2013/11/15/prospects-for-shale-gas-in-new-york/ Wednesday, October 30, 2013 at 7:00 pm Hollister Hall, Room B-14, Cornell University, Ithaca Ithaca, N.Y— Lou Allstadt and Chip Northrup, analysts of drilling technologies and the economics of the gas industry, along with Jerry Acton, a systems engineer, and geologist Brian Brock, will give a free presentation on assessing the potential for shale gas drilling in New York State. Having studied 5 years of shale gas production records from Pennsylvania and test wells in N.Y., they have compiled enough information from public and industry sources to confidently address where the Marcellus and Utica could be productive for drilling in New York, given current technology and economic conditions. And just as importantly, they predict where it is unlikely to be economically productive. The team will present the results of their research at Cornell University on Wednesday evening, October 30 at 7:00. The event will be moderated by Dr. Anthony Ingraffea, professor of engineering at Cornell University.

ש f 🖉

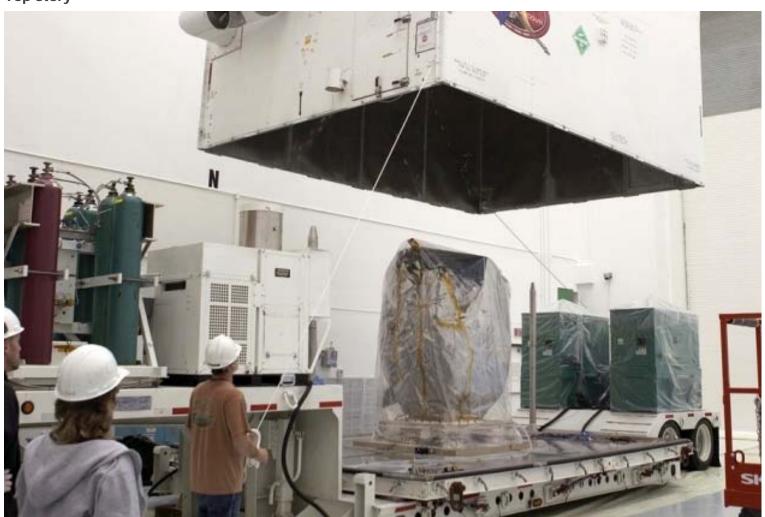
Megan Brewster • 2014-12-04 06:40 PM

Very intriguing study, but perhaps the authors are focused on the wrong question. The authors assumed natural gas prices from the EIA's 2014 annual report to project gas production levels. Rather than "will we run out of gas supply at a given price?", the real question is "at what price will particular plays become uneconomical?" As we know from the recent past, natural gas prices have changed significantly, and no one can currently predict gas prices.

Mark Campey • 2014-12-03 09:57 PM

It would seem Richard Heinberg in his book Snake Oil and his campaigners of the Post Carbon Institute were right to be sceptical about the over optimistic forecasts for US shale oil. It appears that this fallacy is now being fostered on us Europeans with the prospect of drilling rigs going up where ever the fracking companies feel fit as a result of the UK govt. lifting restrictions. For sure, they'll have a fight on their hands.

See other News & Comment articles from Nature



Top story

Delayed DSCOVR probe set to fly

After nearly 14 years in limbo, an Earth-monitoring spacecraft built by NASA is finally set to launch.

Recent

- 1. Scientists protest detention of Palestinian physicist Nature | 21 January 2015
- 2. Fish live beneath Antarctica Nature | 21 January 2015
- 3. Big data: Stealth control Nature | 21 January 2015
- 4. Ageing: Eternal obsession Nature | 21 January 2015

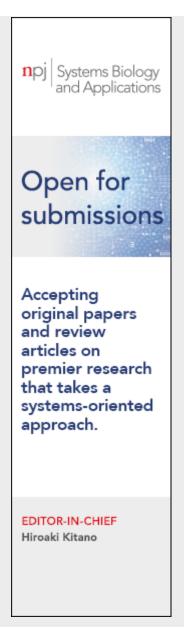
5. Policy: Four gaps in China's new environmental law Nature | 21 January 2015

Read

- 1. City birds use cigarette butts to smoke out parasites Nature | 05 Dec 2012
- 2. Game theorists crack poker Nature | 08 Jan 2015
- 3. Promising antibiotic discovered in microbial 'dark matter' Nature | 07 Jan 2015
- 4. Rave drug holds promise for treating depression fast Nature | 07 Jan 2015
- 5. First atomic blast proposed as start of Anthropocene Nature | 16 Jan 2015

Commented

- 1. The focus on bibliometrics makes papers less useful Nature | 13 Jan 2015 | 20 comments
- 2. Time for the social sciences Nature | 30 Dec 2014 | 17 comments
- 3. Science and satire Nature | 13 Jan 2015 | 9 comments
- 4. First atomic blast proposed as start of Anthropocene Nature | 16 Jan 2015 | 8 comments
- 5. Peer review reviewed Nature | 22 Dec 2014 | 7 comments


View all 🕨

View all

Emailed

- 1. Out of the bag Nature | 14 Jan 2015
- Promising antibiotic discovered in microbial 'dark matter' Nature | 07 Jan 2015
- 3. Rave drug holds promise for treating depression fast Nature | 07 Jan 2015
- 4. Blown-up brains reveal nanoscale details Nature | 09 Jan 2015
- 5. End of cancer-genome project prompts rethink Nature | 05 Jan 2015

View all

Science jobs from naturejobs

Interventional Gastroenterology Physician Job

Kalispell Gastroenterology

Post-Doctoral Position

Leibniz University of Hannover

Scientific Director Basque Centre for Climate Change

International PhD Program in Microbiology

International Max Planck Research School for Environmental, Cellular, and Molecular Microbiology

Call for PhD Students, 15 Open Positions at IMPRS for Heart and Lung Research

Max Planck Insitute for Heart and Lung Research

Post a Free Job 🕨

More Science Jobs

Nature ISSN 0028-0836 EISSN 1476-4687

About NPG	Privacy policy	Naturejobs	About Nature
Contact NPG	Use of cookies	Nature Asia	Contact Nature
Accessibility statement	Legal notice	Nature Education	About the Editors
Help	Terms	RSS web feeds	Nature awards

Search Search

go

© 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. partner of AGORA, HINARI, OARE, INASP, CrossRef and COUNTER