Bureau of Economic Geology Overview and Research Program Examples For JERA (Energy) Americas

Jan 2020

One of three components of Jackson School of Geoscience

- \$300 million endowment
- Largest university-based geoscience program in US

Bureau of Economic Geology

Our *mission* is to serve society by conducting objective, impactful, and integrated geoscience research on relevant energy, environment, and economic issues.

Our *vision* is to be a trusted scientific voice to academia, industry, government, and the public, whom we serve.

Our *values:* At the Bureau, we are Authentic, Respectful, Innovative, Impactful and Collaborative

Bureau of Economic Geology

- Energy, Environment & Economic Research
 - Unit of the Jackson School of Geosciences
 - \$30 35 million/year budget, 90% grants & contracts
 - Established in 1909
 - 2nd largest research unit at UT
- State Geological Survey of Texas
- Ca. 250 researchers, staff & students
- Assets include 3 core facilities, labs, Devine field test site, extensive IT infrastructure

Assets

- Largest core collection in US (1500 miles of core)
- 3 core facilities: Austin (ACRC), Houston (HRC) & Midland (MCRC)
- Devine Geophysical Test Site (DGTS)
- > 1 million electric-logs (TRRC repository)
- Well-equipped laboratories and offices
- Strong IT support and infrastructure

State Geological Mapping

Bureau of Economic Geology Research

Field/Outcrop

Physical Models

Subsurface (Core, log & seismic)

7

4/13/2020

Research Examples: Center of Energy Economics

A Sharper Focus with A Wider Lens

CEE - Strategies and Ongoing Work

TORA Mission and Research Questions

To provide all stakeholders with reliable and up-to-date estimates, projections, models, fundamental understanding and insights at the basin scale for the major US unconventional plays by conducting innovative, integrated research of in-place resource and recoverable volumes, play and well economics and production forecasts with environmental implications.

- > What is the original resource in place (OGIP, OOIP)?
- > What portion of this resource is technically recoverable?
- > What are the long-term production outlook scenarios (at various prices, costs, technology, regulations ?)
- > What are the main subsurface controls that improve predictability?

NOAA, U.S. Navy, NGA, GEBCO

TORA is an Integrated, Multi-disciplinary Project

Geologic/Reservoir Analysis

- Basin Modeling and Reservoir Characterization
 - Original-Resource-in-Place mapping

Well Production Analysis

• Individual Well Gas/Oil/Water Production over Well Lifetime Recovery and Productivity Statistical Analysis

Expected production as a function of

- Well productivity drivers
- Location and Completion
- Inventory of future wells
- Technically Recoverable Resources

Well Economics

Expected well profitability *as a function of*

- well production profile
- operational
- market and regulatory parameters

Production Outlook

- Pace of drilling by year and area,
- Expected gas/oil/water production depending on economics, technology, regulation

Expected Drilling

Profitability and well inventory maps are used to create expected drilling maps:

- Depending on previous year's drilling and expected prices & costs we derive a projection for the drilling portfolio
- 2. Profitability map reveals which locations are likely to be drilled
- **3. Probability of drilling** is assigned based on the inventory of wells available and drilling expected according to the portfolio.

Ikonnikova et. al., 2017

Challenges of Global Unconventional Oil and Gas

- An eyes-wide-open feasibility assessment for energy and environmental resources, technology, infrastructure, policy, scale, and financial implications, to set stage for identifying actionable solutions to support development decisions
- Provide all-in analysis on global unconventional resources as the foundation of long term exploration and production strategy.
- Currently providing private on-demand studies on top requested countries in Americas, Asia and Africa, for key global upstream players, as well as training and consultation for governments in emerging countries.

Global Shale Resource Scorecard				
	U.S.	China	Argentina	Colombia
Resource potential				
Indicative costs			\bullet	ullet
Service availability		٠		
Midstream and infrastructure		ullet		
Access to skill and talent				lacksquare
Regulatory framework		\bullet		
Local business environment		•	\bullet	\bullet
Political and public support		•	\bullet	\bullet
Investment synergy		•	\bullet	\bullet
Ease of trade flows				
Capital resource and financial channels		•		
Favorable O Unfavorable				
Not an exclusive list of countries included in the project				

An ecosystem for value creation of unconventional resources

Economic Value

- Interconnected energy product flows across and along value chains,
 Impact and oppty of gas pipeline and LNG
- Multiplier effect for communities, states, and countries

3

Bureau of Economic

Geology

- Minimize waste footprint and optimize infrastructure buildout, like power grid integration
- Promote operational synergy across product flows and processes from OG to renewables and alternative fuels

Environment and Resources

- Minimize and manage
 environmental impacts
- Collaborative
 environmental resource
 planning aligned with
 local needs

Innovation and Services

- Create a full life cycle support and service network that shares assets, talents, and supply chains, etc.
- Encourage innovation
 across all segments
- Hydrogen, CCUS, Nano Tech

Shale Development Impacts on Energy Markets and Infrastructure

- Leverage upstream research and focus on economic impacts and market dynamics through the whole value chain
 - Natural gas midstream and downstream
 - Electricity grid and load forecast

Workflow of Natural Gas Market (North America) Simulator

Economic

Geology

Sample Output

Price outputs by Market Point

Demand Outlook By Sector

courtesy of RBAC, Inc. using GPCM Gas Pipeline Competition Modeling System

G2M2[®] Global Gas Market Modeling System

Time period

- Monthly forecast required to capture seasonality
- Can back-cast to 2011
- Currently forecasts to 2050

100+ Countries

- All natural gas producers / consumers
- Supply curves based on field level projections with price elasticities
- Five (5) segments of demand (RES, COM, IND, ELC, TRN) with customized elasticities.

LNG Contract and infrastructures

- Contract parameters; take-or-pay volume assumed to flow
- Above take-or-pay competes against spot market
- Portfolio asset contracts included

Pipelines and Storages

- 400+ pipelines and 600+ underground storages
 - Existing
 - Under Construction
 - Proposed and user defined

Multi-Tanker Classes

- Q-Max / Q-Flex
- ARC 7 (Arctic class)
- Conventional (5 size groups)

Customizable and calibrated

- Customize assumptions (supply, demand and infrastructure) to create scenarios
- Calibrated model based on regular database updates.

G2M2[®] unlocks potential for global gas opportunities

(supply-demand balancing network including pipeline systems & LNG infrastructure)

One-of-Kind Market Simulator

Short term operation strategy

- Extreme weather scenarios based on pre-set demand elasticities;
- Monthly Regional or locational basis value,
- Projected utilization rate for pipelines, storage and regasification terminals;
- Customized assumptions on demand to align with government policies on coal and renewables;

A long term global gas outlook

- Cost stacks of all suppliers year-by-year- who and when?
- Long-term projection of pipeline and trade flows based on existing contracts, with ability to add hypothetical contracts and related infrastructures.

Market price of natural gas

- Given a new contracts term for either LNG or gas purchase agreement, what is the fair price of the gas?
- With an investment of pipeline delivering gas to a demand region, what is the value of the project by providing the incremental gas to the market?
- Can the current tariff structure justify the cost of delivery?

Courtesy of RBAC

North America – LNG as an outlet not a driver • Potential impacts of trade

- Potential impacts of trade constraints with China on LNG exports from US
- Project focus: Ongoing additions of LNG projects
- Less a market driver: impact of Henry Hub price from global dynamics is generally minor.

North America LNG

North America LNG Capacity Additions

Courtesy of RBA

Sensitivity Analysis: Colder Winter plus infrastructure constraints

- A colder winter in Europe: +5 BCM increase in demand from winter of 2019 (ending Mar-2020)
- Nuke phasing out adds +5 BCM increase in demand

Geology

BUREAU OF ECONOMIC Cut-off of Russia gas via Ukraine starting Jan 2020: 6 BCM loss

A Pathfinder for Sustainable Energy Transition in Texas

An <u>economic framework</u> to assess "what-if" scenarios and facilitate effective decision making for energy technology and policy choices.

... captures the relationships among the energy mix—driven by *resources, technology and legacy infrastructure, policy, scale, and financial implications*—and

... link decision to repercussions of that mix for *economic development and environmental* quality for the Texas

Input Matrix and Output Visualization

Model inputs will include:

- Energy input matrix a set of choices of energy resources, technologies, policies, and financial realities
- Assumptions
 - Existing energy mix options
 - Legacy infrastructure
 - Implementation requirements
 - Fundamental trends in key subsystems based on industry and subject specific knowledge
- Customized input and output measures to be presented on the interactive user defined interface

Economic Analysis on Environmental and Energy Related Choices

- Economic analysis on produced water options in Permian.
 - Capture the variations of value and risks over time for intangible benefits of natural resource
 - Customize optimization problem and define options to reflect long term strategic value for resource management standpoint versus private operator
- Economic evaluation on new conversion technology of wasted gas (methane) into ammonia
 - Techno-economic analysis (Cost of conversion, CAPEX, OPEX, ROI) to highlight competitive advantage
 - Assessment of necessary market and policy framework for commercialization

Vision of Center of Energy Economics

- Provide impactful and data driven analyses on environmental, economic, and energy issues, with a sharper focus and wider perspective
- Facilitate government, industry, and independent stakeholders to seek actionable and innovative solutions leveraging crossdiscipline expertise
- Build solid knowledge system of U.S. and global energy fundamentals serving as a necessary foundation for collaborations

