Monitoring and Verification Issues for Carbon Storage Pilot Experiments

Susan D. Hovorka
Bureau of Economic Geology
Jackson School of Geosciences
The University of Texas at Austin
Measurement, Monitoring and Verification

MM&V is defined as the capability to:

Measure the amount of CO₂ stored at a specific sequestration site,

Monitor the site for leaks or other deterioration of storage integrity over time,

Verify that the CO₂ is stored and unharmedful to the host ecosystem

(some add Model and Mitigate)

www.netl.doe.gov
Ask: Why is MMV Needed at This Project?

- Health, Safety, and Environmental concerns
- Reservoir economics (ECBM, EOR, EGR)
- Required by regulators
- Credits/emissions trading/liability reduction
- Research objectives
- Public Acceptance
 - How does the public know that a project is safe?
 - How do investors know that a project is effective?
Unexpected Results of Injection

Substitute underground injection for air release

Escape to groundwater, surface water, or air via long flowpath

Earthquake

Escape of CO$_2$ or brine to groundwater, surface water or air through flaws in the seal

Failure of well cement or casing resulting in leakage
Major Impacts of Unexpected Result of Injection

<table>
<thead>
<tr>
<th>Risk</th>
<th>Short term (during injection process)</th>
<th>Long term (after closure)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seismisity</td>
<td>🌞</td>
<td>🌞</td>
</tr>
<tr>
<td>Failure of well engineering</td>
<td>☯️ 🌞</td>
<td>☯️ 🌞</td>
</tr>
<tr>
<td>Leakage over a short path</td>
<td>☯️ 🌞</td>
<td>☯️ 🌞</td>
</tr>
<tr>
<td>Leakage over a long path</td>
<td>☯️ 🌞</td>
<td>☯️ 🌞</td>
</tr>
</tbody>
</table>

- **Health and safety**: ☯️
- **Environment**: 🌞
- **Impact on atmosphere**: 🌟
MMV for CO₂ Already Exists: Use it

- Health and safety procedures for CO₂ pipelines, shipping, handling, and storing
- Pre-injection characterization and modeling
- Isolation of injectate from Underground Sources of Drinking Water (USDW)
- Maximum allowable surface injection pressure (MASIP)
- Mechanical integrity testing (MIT) of engineered system
- Standards for well completion and plug and abandonment in cone of influence and area of review around injection wells.
- Reservoir management; extensive experience in modeling and measuring location of fluids
Keys to Development of Successful Monitoring Program at an Experimental Injection

• Rigorous definition of objectives of monitoring
• Adequate pre-injection characterization and modeling of evolution of conditions post injection
• Sensitivity analysis to match tools to expected or possible signal at the right time

Sample analysis (Core Lab)
Reservoir model
Knox/Yeh, BEG
Flow Simulation
TOUGH2, Doughty, LBNL
Example of Goals: Frio Experiment: Monitoring CO$_2$ Storage in Brine-Bearing Formations

Project Goal: Early success in a high-permeability, high-volume sandstone representative of a broad area that is an ultimate target for large-volume sequestration.

- Demonstrate that CO$_2$ can be injected into a brine formation without adverse health, safety, or environmental effects
- Determine the subsurface distribution of injected CO$_2$ using diverse monitoring technologies
- Demonstrate validity of conceptual and numerical models
- Develop experience necessary for success of large-scale CO$_2$ injection experiments
Monitoring at Frio Pilot

Determine the subsurface distribution of injected CO2 using diverse monitoring technologies.

- Gas wells
- Aquifer wells (4)
- Access tubes, gas sampling

- Downhole sampling
- Wireline logging
- U-tube gas lift
- Tracers
- Radial VSP
- Cross well Seismic, EM

- Injection well (1)
- Observation well (1)
- Land surface
My Recommendations for Designing a MMV Program

- Characterization, modeling, sensitivity, and signal-to-noise analyses are essential
- Rank questions: no one tool is ideal for all questions; Impossible to optimize for all tools

What is the best way to monitor for unexpected events?

Nessie? belcold.com
MMV Technologies

- Intensive monitoring in pilot phases
- Effective monitoring during implementation
- The problem of monitoring slow leakage and long time frames is not yet solved
- See study by Benson on costs
Monitoring Zone Options

- **Atmosphere**
 - Ultimate integrator, dynamic
- **Biosphere**
 - Requires assurance of no damage, dynamic
- **Soil and Vadose Zone**
 - Integrator but dynamic
- **Aquifer and USDW**
 - Integrator, slightly isolated from ecological effects
- **Above injection monitoring zone**
 - First indicator, monitor small signals, more stable. May not integrate
- **In-injection zone - plume**
 - Oil-field type technologies. Will not find small leaks

Consider also lateral complexities, transport, focused flow paths
Atmospheric Monitoring

• Direct detection
• Many tools, from standard monitors to new tools in development
• Applied at many scales
• Detection is complicated because of high ambient CO$_2$ from atmosphere, soil, and vegetation – difficult to isolate small fluxes from subsurface

Real-time CO$_2$ atmospheric monitoring near Naples, Italy
Soil Gas Monitoring

- Done at numerous sites volcanic sites, CO$_2$-EOR
- Relatively low cost, integrates seepage over a time period
- Escaped CO$_2$ is likely to be concentrated in vadose zone
- Like air, detection in soil is complicated because of high ambient CO$_2$
- Flux, composition, isotopes
- Coordinate with ecosystem monitoring

http://volcanoes.usgs.gov/About/What/Monitor/Gas/soil.html
Groundwater Monitoring

- Standard technique in contaminated sites
- Good regional integrator
- Signal of leakage may be complex
- Might be used in combination with natural or introduced tracers
Wireline Well Logging

- Well-known oilfield activity
- Match tools to rock/fluid characteristics
- Typically good vertical resolution, quantitative, interpretable
- Well bore effects and damage may lead to errors
- Interpolate the interwell areas

Frio post injection cased hole sonic log, Sakurai BEG/Mueller Schlumberger
Tracers and Geologic Inferences

- Introduced materials that travel with CO$_2$ can uniquely fingerprint migration
 - Nobel gases
 - PFT’s and other chemically unique materials
 - Detection at very low concentrations
- CO$_2$ can be geochemically unique –
 - C isotopes
 - Impurities
- Hydrologic analysis to determine fractional saturation – Capacity assessment

Frio noble gas and PFT analysis, Barry Freifeld (LBNL) and Timmy Phelps (ORNL)
Reservoir Pressure and Temperature Responses – Powerful and Inexpensive Tools

Sally Benson, LBNL
Surface Geophysics

- Surface seismic imaging – 2D, 3D, 4D
- Alternative methods
 - Electrical contrasts
 - Gravity
 - Passive Seismic
- Interferometry/tilt

Successful time lapse 3- at Sliepner (from Chadwick, 2004)
Time-laps Crosswell Seismic and Vertical Seismic Profiling

- Image host setting and CO$_2$
- Sensitivity to concentration is model dependent
- Resolution limits detection of small volumes
- May not detect slow leakage

Frio X-well Tom Daley, Mike Hoversten, L. Myer, LBNL
Non-Seismic Geophysical Tools

- Electromagnetic: LBNL work
- Spontaneous Potential
- Gravity
- Tilt, Interferometry
Conclusions

- Monitoring and verification advances at pilots will benefit the future application of geologic storage of carbon
- Good design to select the right tool to meet the right need at the right phase of the implementation is important
Information on MMV applied to geologic storage is available from many sources:

A few starters:
IPPC Special Report on Carbon Dioxide Capture and Storage, Sept 2005, esp. chapter 5 geologic storage.
http://www.ipcc.ch/activity/srccs/index.htm
CSLF discussion paper from task force for identifying gaps in CO2 monitoring and verification of storage.
Frio Brine Pilot: www.beg.utexas.edu/co2
GHGT6, Gale and Kaya, 2003, Pergamon Press
GHGT 7, Rubin, Keith, Gilboy/Wilson, Morris, Gale, Thambimuthu, 2005, Elsevier
Princeton Carbon Mitigation Initiative http://www.princeton.edu/~cmi/
MIT Carbon Sequestration Initiative http://sequestration.mit.edu
Carbon Capture Project JIP http://www.co2captureproject.org/index.htm
DOE NETL: http://www.fe.doe.gov/programs/sequestration/