Technology Solutions and Risk Management: Introductory Remarks

Erich Schneider
Associate Professor, Nuclear and Radiation Engineering
The University of Texas at Austin

Third Nuclear Energy Roundtable: Nuclear Still Matters
Houston, TX
January 6, 2016
Three (of several) topics relevant to this theme

• Evolving market conditions present challenges for traditional baseload nuclear
 • How can energy storage, novel process heat applications, and hybrid technologies enable nuclear to meet the challenge?

• Small modular and advanced reactors
 • Are they ready for the market? Can they transform the role nuclear plays across the energy sector?

• Used fuel management and waste disposal
 • Boreholes may provide a disposal solution that works for any fuel cycle strategy. Is borehole disposal technology within reach?
Evolving market conditions: ERCOT, September 13-20, 2015

- For several hours on September 13 and 14, 2015, the average ERCOT hub bus real time market electricity price was negative:
Immediate cause: exceptionally high wind output on September 13 and 14

- Wind output at times exceeded 70% of installed capacity;
- on the evening of September 12, output jumped by nearly 8,000 MW in just a couple of hours.

Figure: ERCOT Wind Integration Report, September 18, 2015.
Technologies enabling nuclear to play a key role in a low-carbon grid

• Nuclear, wind and solar feature high capital and low operating costs:
 • economics requires that these generators be fully utilized.

• How can a combination of nuclear and renewables match the demand profile? Technologies to consider include:
 • electricity storage,
 • At-reactor thermal energy storage,
 • Production of alternate energy carriers, e.g.:
 • nuclear (electricity + heat) / renewable (electricity) hydrogen production via high-temperature electrolysis; underground storage of hydrogen,
 • Nuclear-fossil hybrids, e.g.:
 • High-temperature reactor coupled with gas turbine to run a high-efficiency (66%) topping cycle.
Advanced reactor technologies: Fluoride high temperature reactor (FHR)

Pebble bed FHR:
- Online refueling
- High outlet temperature (600 – 700 C)
- No fuel failure even under beyond design basis accident

FHR with nuclear-air combined cycle plant:
- Provides a peaking capability, enabled by advances in gas turbine technology
- Precedent from 1970s: PWR steam sent to oil-fired superheat for high-efficiency conversion of oil to electricity

Illustrations courtesy of C. Forsberg, MIT
Deep borehole disposal in crystalline rock can isolate waste for millions of years

- Minimal reliance on engineered barriers due to
 - isolation from near-surface groundwater flows,
 - long transport length through low porosity/permeability rock,
 - Chemically reducing environment limiting mobility.
- Some 800 boreholes could dispose used fuel from all existing reactors

Figure. Waste is disposed at depths of 3-5 km in 0.5-0.75 m diameter boreholes.

Deep boreholes and the importance of a feasible disposal option to the nuclear industry

- Boreholes for waste disposal require modest progress beyond current capabilities (figure).
- The absence of a demonstrated waste disposal alternative represents a risk on several levels:
 - public acceptance, cost, licensing…
- Large excavated repositories like Yucca Mountain are one-off projects for which confidence-building demonstrations aren’t feasible
 - proving the viability of borehole disposal may substantially reduce perceived risk.

Table: Internal Clearance of Bore (Diameter)

<table>
<thead>
<tr>
<th>Depth (km)</th>
<th>Shallow</th>
<th>Medium</th>
<th>Deep</th>
<th>Very Deep +</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 - 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 - 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 0.1 m (4 in)</td>
<td>0.1 m (12 in)</td>
<td>0.3 m (20 in)</td>
<td>0.5 m (30 in)</td>
<td>0.75 m (39 in)</td>
</tr>
</tbody>
</table>

Green: mature, industrially implemented application
Yellow: feasible application (modest uncertainty)
Red: beyond current technology (larger uncertainty)

A – C: achieved boreholes
D – F: region of interest for radioactive waste disposal