Commentary: European Live Issues, Post-recession Demand

Dr. Anouk Honore
Senior Research Fellow
OIES Gas Research Programme
Anouk.honore@oxfordenergy.org

European gas demand post Fukushima

Outline

• 2008-2011 trends in Europe
• Reactions to the Fukushima incident
• Focus on Germany
LNG imports to Europe from origin (mcm)
First 3Q 2011: 48% from Qatar, 18% from Nigeria, 18% from Algeria, 7% from Egypt 4% from Trinidad and 3% from others

LNG deliveries to Europe, 2008-2011

- In 2009, -5.6% in gas demand, additional LNG imports absorbed by:
 - Lower domestic production, primarily in the UK
 - Lower pipeline imports (mostly Russia)
- In 2010, +7.5% in gas demand, LNG imports continued to increase, domestic production and pipeline imports only partially recovered lost volumes in 2009
 - Net imports: +8.8%, LNG imports: +27% (+18 bcm)
 - All but one (Spain) countries imported more LNG in 2010 than in 2008
 - Demand recovered due to cold winters (Jan-Feb and Nov-Dec 2010) but also economic recovery and coal to gas switching (~ +4% temperature-corrected)
- In 2011, LNG to Europe at unprecedented high level, with the market absorbing flexible supplies, at least before the impacts of the 11th March 2011 in Japan
On the supply side...

- Qatar’s share in western Europe’s LNG market grew from 29% in 2009, 42% in 2010 and 48% in 2011.
- Impact felt by competing producers although partly offset by demand recovery.
- LNG from MENA was especially hit:
 - Some losses can be explained by diversions to higher-paying markets.
 - But a large part of the reduction relates to the diversion of gas from LNG export to domestic markets and maintenance at export facilities.
- Resurgence of Nigerian production in 2010-2011.
- Asian demand (pre- and post-Fukushima) => 2011: tighter LNG market than anticipated.

Source: GLM 2011, 7.08, p.14
LNG deliveries to Europe, 2004-2011 (mcm)
UK: 1st LNG importer in Europe, before Spain for the first 3Q of 2011
UK: 30%, Spain: 25%, France: 16%, Italy: 10%, Belgium: 7%, Turkey 6%, Others: 6%
(Short term and spot imports have tripled between 2008 and 2010)

LNG flows in the UK: rapid expansion since 2009
• UK is well placed to benefit from the increase in volume of uncontracted LNG given its excess regas capacity
• South Hook with its Qatar gas is providing regular supplies
• Isle of Grain and Dragon are supplied by many spot cargoes
• => Transit country for LNG in North West Europe
 ◆ 2010, the UK imported 55 bcm of gas, 1/3 in the form of LNG, and exported more than 16 bcm through the IUK
• Almost 80% of 15 bcm of LNG to the UK was imported from Qatar in 1H 2011
 ◆ Most of the LNG to the UK from Qatar is contracted either on long-term basis to South Hook or on medium term basis to Centrica at the Isle of Grain (NBP priced)
 ◆ These contracts are flexible and allow diversion to higher-valued markets

Is gas demand recovering???

<table>
<thead>
<tr>
<th></th>
<th>y-o-y</th>
<th>Jan-Aug</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009 vs 08</td>
<td>-5.6 %</td>
<td>-8</td>
</tr>
<tr>
<td>2010 vs 09</td>
<td>7.5 %</td>
<td>8</td>
</tr>
<tr>
<td>2011 vs 10</td>
<td>-</td>
<td><5.6%</td>
</tr>
<tr>
<td>2010 vs 08</td>
<td>1.45 %</td>
<td>-0.5</td>
</tr>
<tr>
<td>2011 vs 08</td>
<td>-</td>
<td>-6.2</td>
</tr>
</tbody>
</table>

Very cold temperatures in 2010

HDD in 7 major gas markets, calculated from weather underground data.
Real GDP - % change from previous year

OECD, 28 Nov. 2011 & OECD, May 2011

Energy Studies
Natural Gas Research Programme

Industry output

European union, Source: Eurostat
Electricity generation

Electricity generation by fuel

Main European markets, Source: ENTSOE
Demand trends in Europe...

- Slow gas demand recovery
 - Possible exceptions: cold winters (+10-15 bcm)
- Electricity demand in not back to sustain growth
 - Limited growth expected due to economic situation + efficiency measures
- => Gas for power: possible limited growth in the near term (2015)
 - Transition or destination fuel? Baseload or mostly back up for intermittent generation?
- Since March 2011, additional uncertainty on the future of nuclear energy in Europe
Nuclear energy before Fukushima

• 3 major accidents of nuclear power
 ◦ Three Mile Island (USA, 1979)
 ◦ Chernobyl (Ukraine, 1986)
 ◦ Fukushima (Japan, 2011)

• Reactions to past catastrophes in Europe
 ◦ Sweden, Spain, Italy, Germany, Switzerland...

• Past experiences show that after some time, policies can be revised

• Nuclear renaissance since the mid-2000s
 ◦ Nuclear power = security of supply and zero carbon emission

2011: diversified reactions in Europe 1/

• Strongest reaction in Germany
 ◦ Phase out nuclear plants by 2022
 ◦ 8 GW already shut down in March

• Some countries have decided to put a date on the phase out of nuclear energy
 ◦ Switzerland: 2034
 ◦ Spain: 2028
 ◦ Belgium: 2025

• Public opinion against NEW nuclear power
 ◦ Italy: 94% NO
 ◦ Sweden
2011: diversified reactions in Europe 2/

- Other countries have decided to continue their nuclear programmes
 - France
 - Finland
 - Netherland
 - UK
 - Central and Eastern Europe
- => Only a small number of new plants likely to come on stream in this and maybe next decade
 - => Without even considering impacts of post Fukushima

New dynamics for nuclear energy

- OLD PLANTS:
 - Limitations of life-time (60 years, 40 years or shorter)...
 - ... Possibly as a result of the cost of stricter safety standards
- NEW PLANTS:
 - Cost and construction of new EPR: problems even before Fukushima
- Questions on the competitiveness of both old and new nuclear plants
- => New dynamics not in favour of a rapid nuclear renaissance in Europe, certainly not at a cheap price
Impacts on energy policies towards a low carbon economy

- **Before the Fukushima accident**
 - Renewables + nuclear (+ CCS?)
 - Gas as the transition fuel

- **Post Fukushima: too early to have new policies, but:**
 - Nuclear energy is uncertain: political restriction or economic constraints
 - Hydro: environmental constraints
 - Renewable energy: baseload energy? Impacts of downward revisions of FIT and other support schemes?
 - If CCS does not develop, question mark on the impacts for coal but also for gas

Germany’s ‘national energy concept’ to 2050 (28 Sept 2010)

- **First comprehensive energy policy in 30 years**
- “Path to the renewable energies era” => period: 2010-2050
 - GHG emissions: -40% to 2020, at least -80% by 2050 compared with 1990
 - Renewables: 35% of gross electricity consumption by 2020, 50% by 2030, 65% by 2040 and 80% by 2050
 - Wind energy to play a “decisive” role in electric supply in 2050
 - Nuclear plant run times are extended
 - Expansion of electricity networks of “central significance”

- **Many criticism from environmental and political groups**
Germany: New Energy Concept 2010
=> 2020, not much change for gas, but sharp decline possible afterwards

TPES in Germany by fuel source, from various scenarios

Impacts of the German nuclear phase-out on electricity generation and gas demand are yet unclear

- **Short term (2015):**
 - German had an overcapacity
 - No need of import this winter (government)
 - Possible problems in neighbouring countries

- **Mid term (2020-2025):**
 - To replace nuclear: many scenarios (Merkel: 10 GW of wind and solar + 10 GW of new gas plants + efficiency, Others: between 6 and 20 GW of new coal and gas plants)
 - Higher price for electricity

- **Long term:**
 - 2030s/2040s: old scenarios had planned for nuclear phase-out
 - Emphasis on efficiency measures... and imports ???
Thank you

http://www.oxfordenergy.org/gasprog.shtml