Some stylized facts

- Greater GDP \leftrightarrow more energy consumption.
- Greater GDP per capita \leftrightarrow more energy consumption per capita.
- As countries get richer, energy intensity declines because economy transitions: agricultural \rightarrow industrial \rightarrow services.

Energy demand by income

Rapid liquid fuel demand growth in emerging economies led by China has been a key driver of the crude oil price since the early 2000s.

Energy poverty

- \sim1.4 billion with no access to electricity
 - IEA base case: \sim1.2 billion in 2030
- \sim2.7 billion relying on traditional biomass
 - IEA base case: \sim2.8 billion in 2030
- 28% electrification, 80% biomass in Sub-Saharan Africa (excluding South Africa)
- South Asia is the second biggest challenge
Implications of energy poverty

- Economic poverty
- Increased illiteracy
- Decreased life expectancy
 - Water-borne diseases
 - Indoor air pollution
- Environmental degradation
 - Deforestation
 - Pollution (e.g., diesel generators)

Income and electricity access

Income and access to modern fuels

Premature deaths

What can be done?

- Electrification
 - Central generation for urban areas (more efficient and reliable)
 - Distributed generation for rural areas (more fitting for wind, solar, mini hydro)
- Modern fuels indoors
 - Cleaner burning stoves for biomass or coal
 - Switching to gaseous fuels (e.g., LPG)

Energy realities we can’t wish away

- Alternatives are far away from the scale needed to replace conventional fuels.
- They are more expensive than conventional technologies.
- Integration problems (e.g., intermittency, scalability limits, inability to communicate with existing infrastructure, impact on other fuels).
Gürcan Gülen, Ph.D.

CEE Model (cents/kWh)

<table>
<thead>
<tr>
<th>Energy Source</th>
<th>$/kW</th>
<th>O&M ($/kwh)</th>
<th>fuel (MMBtu)</th>
<th>O&M ($/MMBtu)</th>
<th>loan Interest</th>
<th>loan period</th>
<th>PLF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>9.0</td>
<td>7.2</td>
<td>10.2</td>
<td>12.3</td>
<td>9%</td>
<td>15</td>
<td>35.1</td>
</tr>
<tr>
<td>Natural gas</td>
<td>1.00</td>
<td>0.006</td>
<td>5.0</td>
<td>12%</td>
<td>10</td>
<td>85%</td>
<td></td>
</tr>
<tr>
<td>Nuclear</td>
<td>5.35</td>
<td>0.013</td>
<td>7.0</td>
<td>8%</td>
<td>15</td>
<td>90%</td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td>2.43</td>
<td>0.009</td>
<td>1.0</td>
<td>8%</td>
<td>15</td>
<td>35%</td>
<td></td>
</tr>
<tr>
<td>Solar (CSP)</td>
<td>4.59</td>
<td>0.030</td>
<td>1.0</td>
<td>0%</td>
<td>15</td>
<td>24%</td>
<td></td>
</tr>
</tbody>
</table>

Capital and O&M costs are based on EIA's Nov 2010 report: http://www.eia.gov/oiaf/beck_plantcosts/index.html

Energy content & efficiency

- Coal: 24-30 MJ/kg and 35-45% conversion efficiency
- Natural gas (methane): ~55 MJ/kg and 55-60% conversion efficiency (CC)
- Natural uranium: ~560 MJ/kg
- Reactor-grade uranium: ~3,700 MJ/kg and 30-35% conversion efficiency

Change is Slow & Difficult

<table>
<thead>
<tr>
<th>Year</th>
<th>Coal</th>
<th>Oil</th>
<th>Gas</th>
<th>Nuclear</th>
<th>Gas</th>
<th>Hydro</th>
<th>Other renewables</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2035</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>