The Bureau of Economic Geology The University of Texas at Austin Jackson School of Geosciences
Friday Seminar Series

From Bureau of Economic Geology, The University of Texas at Austin (
For more information, please contact the author.

Bureau Seminar, September 9, 2011

Helping Water Flow Through Rock - A new fracture-rock flow model for understanding engineered geothermal systems

Link to streaming video: available 09.09.2011 at 8:55am

Dr. Peter Malin
University of Aukland

Peter Malin has an extensive background in seismology and geological-geophysics. He has worked on San Andreas fault seismology and tectonics, on deep crustal reflection seismology, and the seismology of hydrothermal systems. He has developed borehole instrumentation and has over 25 years experience installing borehole networks. His instruments have been used worldwide from geothermal fields in Iceland to the Californian San Andreas fault.
Peter Malin Enhanced/Engineered Geothermal Systems (EGS) are conceptually simple but have long defied cost-effective field realization. The chief difficulties appear to be
  • The high cost of drilling
  • Difficulties in predicting flow.

While drilling costs continue to resist significant reduction, we believe important progress is at hand for addressing flow uncertainty in situ – the latter meaning at the drilling target itself. Accurate handling of in situ flow uncertainty can thus in principle reduce risks to EGS drilling.

Key to EGS progress is recognizing:

  • the specific physical origin of in situ flow uncertainty on all scale lengths;
  • the fact that in situ flow uncertainty admits no statistical/sampling/averaging solution;
  • in situ flow uncertainty is amenable to numerical modeling;
  • modeling in situ flow uncertainty can be integrated into well-log analysis;
  • increased applications of horizontal drilling to hydrocarbon recovery provide a technology base relevant to EGS.

We discuss this sequence of points in the context of an EGS project centered on a pair of parallel horizontal wells. The wells are modeled as located in a rock volume with well log and core determined flow uncertainty. Focusing on in situ flow heterogeneity between the EGS well pair, we find an approximate scale-relation,

a2ℓ ~ Qr0 / 2πφv ~ O(106m3)

between a wellbore length ℓ and separation 2a and two EGS flow factors. These factors are: wellbore flow Q ~ 25L/s and mean in situ flow velocity v ~ 10-8m/s. The latter velocity allows sustained conductive heat recharge of the EGS volume. The other terms in this relation are wellbore radius r0 ~ 0.1m and mean porosity φ ~ 0.06. With these factors, sustained heat exchange can be realized, for example, for ℓ ~ 400m and 2a ~ 75m.

In this presentation we use well log-determined flow-uncertainty models to design wells for the Raton Basin that satisfies the scaling relation.


dogs Department of Geological Sciences
utig Institute for Geophysics
2015 Spring Fall
2014 Spring Fall
2013 Spring Fall
2012 Spring Fall
2011 Spring Fall
2010 Spring Fall
2009 Spring Fall
2008   Fall
Contact information
Maps and Directions
Staff Directory
Media Contacts
Employment Opportunities
Bureau Reports
©2017 Bureau of Economic Geology, The University of Texas at Austin