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Muir-Dellinger parameters for analysis of anisotropic signatures
Yanadet Sripanich1, Sergey Fomel1, Paul Fowler2, Alexey Stovas3, and Kyle Spikes1

1 The University of Texas at Austin , 2 Fowler Geophysical Consulting , 3 NTNU

SUMMARY

We revisit the Muir-Dellinger (MD) anisotropic parameteriza-
tion and conduct its analysis based on several criteria for good
anisotropic parameterization. Our results suggest that MD pa-
rameters represent an attractive parameterization for studies on
qP waves and inversion of anisotropic parameters under these
criteria. Additionally, MD parameters exhibit a strong linear
relationship that depends on lithology.

MUIR-DELLINGER ANISOTROPIC PARAMETERS

Thomsen parameters (Thomsen, 1986) are commonly adopted
for studying seismic anisotropy in VTI media and represent
combinations of stiffness coefficients, believed to govern the
most important anisotropic signatures. An extension of Thom-
sen parameters to orthorhombic media proposed by Tsvankin
(1997) has an undesirable property of strong variance due to
different choices of coordinate labeling (Fowler, 2015), which
results from its emphasis on the vertical symmetry axis for a
stack of thin beds. This may not be optimal for orthorhombic
media in which all three symmetry axes are of equal impor-
tance. Several other schemes are discussed by Sripanich et al.
(2016). In general, good anisotropic parameters should have a
clear physical meaning and allow complex formulas of wave
attributes to be expressed in a concise manner with the com-
plexity hidden inside the notation. Other important features
may also include easy pseudoacoustic simplifications for qP
waves, straightforward extension to orthorhombic media, and
relative orthogonality for parameter estimation.

In this paper, we consider an alternative set of anisotropic pa-
rameters that addresses the aforementioned requirements for
good parameterization. The basis for our construction is the
Muir-Dellinger (MD) parameters, originally proposed by Muir
and Dellinger (1985) and extended to TI media by Fomel (2004)
and orthorhombic media by Sripanich and Fomel (2015). In
2D case suitable for the analysis of qP waves in TI media, the
set consists of four parameters: w1 = c11, w = c33, q1,
and q3. The first two parameters constitute the qP-wave veloc-
ity squared along the horizontal (n1) axis and the vertical (n3)
axis. The remaining two (q1 and q3) are anelliptic parameters
that govern the deviation from an elliptical phase velocity and
are defined as follows:

q1 =
c55(c11− c55)+(c55 + c13)2

c33(c11− c55)
, (1)

q3 =
c55(c33− c55)+(c55 + c13)2

c11(c33− c55)
. (2)

They can be found from fitting the velocity curvatures along
the horizontal (n1) axis and the vertical (n3) axis as denoted by
the subscript. Their straightforward extension to orthorhom-
bic media has similar definitions with appropriate changes in

indices (Sripanich and Fomel, 2015). Under MD parameters,
the exact phase velocity of qP waves in VTI media is given by
(Sripanich and Fomel, 2015):

v2
qP(θ) =

1
2
(w1 sin2

θ +w3 cos2
θ + τ)+ (3)

1
2

q
(w1 sin2

θ +w3 cos2 θ − τ)2 +4w1w3λ sin2
θ cos2 θ ,

where θ is the phase angle measured from the vertical axis

τ =
(q1−q3)w1w3

w3(q1−1)−w1(q3−1)
and λ =

(q1−1)(q3−1)(w3−w1)
w3(q1−1)−w1(q3−1)

.

Assuming q1 = q3 results in τ = 0 and λ = q1−1 = q3−1 and
reduces equation 3 to the pseudoacoustic approximation stud-
ied by Alkhalifah (1998). Therefore, pseudoacoustic approx-
imation is equivalent to setting q1 = q3 under MD parameter-
ization, which implies equal phase velocity curvatures along
vertical and horizontal axes.
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Figure 1: Plot of the linear relationship (equation 4) between
q1 and q3 from shale samples. The dashed line denotes the
line of slope = 1. Similar plots are observed for sandstones
and carbonates (Sripanich and Fomel, 2015).

THE EMPIRICAL LINEAR RELATIONSHIP

Instead of using q1 = q3 as suggested by the pseudoacoustic
approximation, Sripanich and Fomel (2015) showed that there
existed a strong linear correlation (Figure 1) between q1 and
q3 found from laboratory measurements on stiffnesses (ci j) in
TI media for different rock samples. This correlation can be
used to reduce the number of dependent parameters in veloc-
ity approximations for qP waves while still maintaining a high
level of approximation accuracy (Sripanich and Fomel, 2015).
The empirical linear relationship between q1 and q3 takes the
form

q1−1 = s (q3−1) , (4)
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Muir-Dellinger anisotropic parameters

which can be translated to an equivalent expression

v2
S0

v2
P0

=
(s−1)(1+2ε)

s− (1+2ε)
, (5)

where vS0 and vP0 denote the verical qS and qP velocities
respectively and s = (1− c55/c33)/(1− c55/c11). Figure 1
shows the plot of equation 4 with the data from various labora-
tory measurements in the literature (e.g, Johnston and Chris-
tensen, 1995; Vernik and Liu, 1997; Hornby, 1998; Jakob-
sen and Johansen, 2000; Wang, 2002; Dewhurst et al., 2011).
An analogous linear trend was observed for samples of other
rock types including sandstones and carbonates (Sripanich and
Fomel, 2015). Equations 4 and 5 suggest possible use of this
empirical linear relationship for reduction in parameter num-
ber in any expression of different anisotropic signatures, for
prediction of ε or other parameters related to the horizontal
direction from information in the vertical direction, and for
further insight to the degree of subsurface anisotropy from the
deviation of slope value from one.

Figures 2 shows a comparison of resultant slope values com-
puted from self-consistent rock physics modeling (SCA) and
Backus averaging for a synthetic shale. The slope values vary
in a small amount despite a significant variation in mineral
composition. Moreover, both methods also produce results
with similar variational trends. These outcomes partially val-
idate the global linear trend observed empirically in Figure 1
based on measurements from different shale samples that were
subjected to various conditions in the lab.
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Figure 2: Comparison between resultant slope values from a)
Backus averaging and b) SCA based on a synthetic shale. A
general trend is observed in the change of slope values with
the change in mineral proportions.

SENSITIVITY ANALYSIS

To compare relative orthogonality of different parameteriza-
tions, Sripanich et al. (2016) proposed to apply the general for-
mula of a resolution matrix, which is an approximation to the
Hessian of the linearized inversion of phase velocity squared,
with respect to different parameterizations and therefore, an
approximation to the inverse covariance matrix for these pa-
rameters. One indicator of a well-behaved parameterization is
a small condition number of the Hessian, which corresponds to
the smallest ratio of largest and smallest eigenvalues (λmax/λmin).
As indicated in Figure 3, among four different parameteriza-
tions, the optimal parameterization associated with the small-
est condition number is the Muir-Dellinger scheme.

log(λmax /λmin) 
= 11.51

log(λmax /λmin)
 = 11.15

log(λmax /λmin) 
= 5.37

log(λmax /λmin) 
= 10.28
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Figure 3: Distribution of eigenvalues of the sensitivity matrix
for qP phase velocity in Greenhorn shale TI model. The plot
indicates that MD has the lowest condition number.
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S-waves normal moveout velocity ellipse in vicinity of the singularity point in tilted ORT media
Yuriy Ivanov∗ and Alexey Stovas, Norwegian University of Science and Technology

SUMMARY

Quasi shear wave propagation in orthorhombic media is com-
plicated by the existence of so-called point singularities – the
points where slowness surfaces of the split shear waves cross
each other. In vicinity of these points, the slowness surfaces
have a conical shape. In tilted orthorhombic (TOR) medium,
the point singularities can occur along the vertical, distort-
ing the traveltime parameters that are defined at zero-offset.
We analyze the influence of the singularities on the normal
moveout (NMO) velocity ellipse by analyzing the second order
derivatives of the slowness surface. Using numerical model,
we demonstrate how the NMO ellipses of the split S-waves
are affected by the singularity.

INTRODUCTION

Crampin (1981) showed that there should exist at least one
point singularity in one of the symmetry planes of an orthorhom-
bic medium. In the vicinity of the singularity, slowness sur-
faces of both S-waves have anomalous curvature, and polariza-
tion directions can change rapidly. Many publications address
the issue of the point-singularities in orthorhombic and lower
symmetry anisotropic media (Crampin, 1991; Brown et al.,
1993; Grechka and Obolentseva, 1993; Vavryuk, 2001). We
address the practically important situation when the symmetry
planes of the orthorhombic medium are tilted such a way the
singularity point is moved close to the vertical axis. In this
case, the behavior of the NMO ellipse (Grechka and Tsvankin,
1998) complicates a lot leading to the ellipse degeneration.

THEORY

In horizontal homogeneous anisotropic layer, the series for the
one-way traveltime squared with respect to the horizontal off-
set projections x and y expressed through the offset r along the
azimuth α (the source is located at the origin) read

t2(r,α) = t2
0 +

r2

V 2
nmo(α)

+ ..., (1)

where radial offset r is calculated from the traveltime surface
apex at (x0,y0), α is the azimuth along which (with respect to
the apex) the one-way traveltime is measured, t0 is the one-way
traveltime at the apex, V 2

nmo(α) is the NMO ellipse (Grechka
and Tsvankin, 1998). The NMO ellipse is obtained from the
derivatives of the vertical slowness with respect to the horizon-
tal slownesses evaluated at zero horizontal slownesses, and it
can be explicitly obtained from the Christoffel equation. We
use the following notation for the derivatives q(N)

i j , N = S1,S2
of the Nth wave mode:

q(N)
i j =

1
(i+ j)!

∂ j

∂ p j
2

∂ i

∂ pi
1

p(N)
3

∣∣∣∣
p1,2=0

, i, j ≥ 0, (2)

where p(N)=(p1, p2, p(N)
3 )T is the slowness vector of the wave

mode under consideration. In order to obtain the TOR medium,
we rotate the slowness surface in the orthorhombic medium
at three Euler angles: the azimuth φ , the tilt θ , and the az-
imuth ψ (Lapilli and Fowler, 2013). The azimuth φ controls
the orientation of the ellipse and not its shape, hence we set
φ = 0. In terms of traveltimes, the zero order derivative q00
controls the value t0 at the apex of the traveltime surface, the
first-order derivatives q10 and q01 control the position of the
apex (x0 = −zq10, y0 = −zq01), and the second-order deriva-
tives q20, q11, and q02 control the NMO-ellipse. We distin-
guish the wave modes based on their velocity along the verti-
cal in unrotated ORT medium: VS1 =

√
c55 and VS2 =

√
c44,

where c44 and c55 are the corresponding stiffness coefficients
of the orthorhombic (before the rotation) medium.

If the TOR symmetry planes are rotated such a way that singu-
larity point is moved close to the vertical, the behavior of the
NMO ellipse complicates a lot, leading to the ellipse degen-
eration. In terms of the derivatives qi j, the occurrence of the
S-wave singularity in the vicinity of the vertical axis leads to:

1. The S-waves zero-order coefficients are getting close in
value:

∣∣∣q(S1)
00 −q(S2)

00

∣∣∣→ 0.

2. First-order coefficients q(N)
10 and q(N)

01 undergo an abrupt
change, and reach infinity at the singularity point.

3. Values of the second order coefficients q(N)
20 and q(N)

02 sharply
increase reaching the infinity at the singularity point. Value
of the mixed derivative q(N)

11 changes abruptly and reaches
infinity if the singularity occurs outside the symmetry planes,
and zero if it occurs in one of the symmetry planes.

4. The NMO ellipses of both S-waves do not exist at the sin-
gularity. However, in the vicinity of the singularity, the
S2-wave NMO-ellipse degenerates into hyperbola and the
S1-wave NMO ellipse preserve its elliptical shape although
it is elongated along one of the semi-axes.

As can be seen from above, due to discontinuity in solutions
for q(N)

00 through a singularity point, derivatives q(N)
i j are not de-

fined at the singularity. The singularity points can be located
in (θ ,ψ)-space (there is no dependence of q(N)

00 on angle φ ).
At the singularity point, the discriminant ∆(θ ,ψ) in bi-cubic
equation for q00 is equal to zero. In a sense, ∆(θ ,ψ) is a mea-
sure of closeness of the two solutions of the cubic equation.

In order to analyze the concaveness of the slowness surface
in vicinity of the singularity points, we calculate the Gaus-
sian curvature Kp(θ ,ψ). The curve Kp(θ ,ψ) = 0 separates
the hyperbolic Kp < 0 and elliptical Kp > 0 areas of the slow,
S2-wave, slowness surface. Hyperbolic area corresponds to
concave part of the slowness surface, and the NMO-ellipse in
this area is degenerate. The Gaussian curvature of the fast,
S1-wave, slowness surface is always positive in the vicinity of
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S-waves NMO ellipse in vicinity of the singularity points in TOR

the singularity (apart from situations when there exist triplica-
tions), and it can reach high values due to high curvature of the
slowness surface. At the singularity point, the Gaussian curva-
ture of both waves is infinite due to discontinuity of the q(N)

00 .
We should further refer to the Gaussian curvature Kp as that
of the S2-wave. For the numerical tests we use the values of
the density normalized stiffnesses (in km2s−2) of the Phenolic
CE, taken from Brown et al. (1993): c11 = 12.8, c22 = 11.3,
c33 = 8.6, c44 = 2.3, c55 = 2.6, c66 = 2.8, c12 = 5.3, c23 = 4.7,
and c13 = 4.9. This model contains a point singularity in the
[x,z] plane at θ ≈ 64◦. For this model, the curve Kp = 0 and the
corresponding region in the [x,y]-plane are shown in Figure 1.
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Figure 1: The curve Kp(θ ,ψ) = 0 (left) and a corresponding
region of the positions of the extremum of the traveltime sur-
face (right).

The second order derivatives of the slowness surfaces calcu-
lated as a function of θ in the vicinity of the singularity point
are shown in Figure 2. At the singularity (θ ≈ 64◦,ψ = 0),
both q(N)

20 and q(N)
02 are discontinuous and infinite; q(N)

11 is zero
if the the singularity is located within the symmetry plane. The
NMO ellipses for both S-waves are shown in Figure 3.
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Figure 2: The second order derivatives q(N)
20 (top), q(N)

11 (mid-

dle), and q(N)
02 (bottom) in vicinity of the singularity point

(θ ≈ 64◦,ψ = 0). Values for the S2-wave are shown in red,
for the S1-wave in blue. Thickness represents different values
of ψ: 0 (thick), 0.5◦ (medium), and 1◦ (thin).
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Figure 3: The NMO ellipses for S2- (red) and S1-waves (blue)
in vicinity of the singularity point. Thickness represents dif-
ferent values of ψ: 3◦ (thick), 6◦ (medium), and 9◦ (thin).

CONCLUSIONS

We investigate the influence of the point singularity on the
NMO ellipse in tilted orthorhombic media when the singular-
ity occurs close to the vertical. We show that the NMO ellipse
of the S2-wave degenerates into hyperbola for all the points
on slowness surface where the Gaussian curvature is negative.
The S1-wave NMO ellipse is elongated along one of its semi
axes in vicinity of the singularity point.

ACKNOWLEDGMENTS

Authors thank the ROSE project for a financial support.

REFERENCES

Brown, R. J., S. Crampin, E. V. Gallant, and R. W. Vestrum,
1993, Modelling shear-wave singularities in an orthorhom-
bic medium: Special issue; papers presented at the Fifth in-
ternational workshop on Seismic anisotropy, 29, 276–284.

Crampin, S., 1981, A review of wave motion in anisotropic
and cracked elastic-media: Wave Motion, 3, 343–391.

——–, 1991, Effects of point singularities on shear-wave prop-
agation in sedimentary basins: Geophysical Journal Inter-
national, 107, 531–543.

Grechka, V., and I. Tsvankin, 1998, 3-D description of nor-
mal moveout in anisotropic inhomogeneous media: Geo-
physics, 63, 1079–92.

Grechka, V. Y., and I. R. Obolentseva, 1993, Geometrical
structure of shear wave surfaces near singularity directions
in anisotropic media: Geophysical Journal International,
115, 609–616.

Lapilli, C., and P. Fowler, 2013, Rotation parameters for model
building and stable parameter inversion in orthorhombic
media: SEG Technical Program Expanded Abstracts 2013,
4656–4660.

Vavryuk, V., 2001, Ray tracing in anisotropic media with sin-
gularities: Geophysical Journal International, 145, 265–
276.

17th International Workshop on Seismic Anisotropy

4



Elastic wave extrapolation in strongly heterogeneous anisotropic media
Junzhe Sun∗1, Sergey Fomel1, Yanadet Sripanich1 and Paul Fowler2

1The University of Texas at Austin, 2Fowler Geophysical Consulting

SUMMARY

Conventional approaches to wave-mode separation assume
that the medium properties are sufficiently smooth so that their
spatial derivatives can be ignored. However, in strongly het-
erogeneous media, e.g., at medium interfaces, these terms can
become significant and should be taken into account when
wavefield extrapolation and wave-mode separation are per-
formed simultaneously. In this work, we derive a general solu-
tion to the elastic anisotropic wave equation that is capable of
accounting for strong heterogeneity of the model, and there-
fore providing accurate wavefields. We employ lowrank ap-
proximation for efficient application of the proposed operator.
Numerical examples demonstrate 3D wave propagation in a
two-layer orthorhombic model.

INTRODUCTION

Elastic wave extrapolation accounts for elastic properties of the
Earth, which is crucial for seismic imaging of subsurface. Re-
cently, recursive integral time extrapolation (RITE) methods
(Du et al., 2014) have been introduced for stable and dispersion-
free time extrapolation of elastic waves in isotropic (Chu and
Stoffa, 2011; Firouzi et al., 2012) and anisotropic media (Hou
et al., 2014; Cheng et al., 2016). Wave-mode separation is of-
ten needed to mitigate cross-talk between P- and S-waves in
elastic imaging. In isotropic media, this can be achieved using
the divergence and curl operators (Aki and Richards, 1980).
In anisotropic media, wave-mode separation requires project-
ing the vector wavefield onto the polarization directions of dif-
ferent wave modes (Dellinger and Etgen, 1990). Most exist-
ing methods assume the medium property to be sufficiently
smooth so that their spatial derivatives can be neglected (Dellinger
and Etgen, 1990; Yan and Sava, 2009, 2012; Zhang and McMechan,
2010; Cheng and Fomel, 2014; Sripanich et al., 2015).

However, the Earth model can be strongly heterogeneous and
contain discontinuities, e.g., at salt/sediment boundaries. In
such cases, the assumption about the smoothness of the Earth
model is no longer valid and could lead to inaccurate calcu-
lation of polarization directions. More importantly, simulta-
neous wave extrapolation and wave-mode separation based on
such an assumption (Hou et al., 2014; Cheng et al., 2016) may
fail to provide reliable phase and amplitude information. In
this paper, we introduce a general framework for elastic wave
extrapolation in strongly heterogeneous and anisotropic media
without the assumption of the smoothness of the medium. The
proposed method uses Fourier Integral Operator (FIO) which
allows accurate and stable wave extrapolation to be performed
without explicit wave-mode separation. We derive one-step
elastic wave extrapolation based on the form of the analytical
solution in the homogeneous case. Lowrank approximation is
used for efficient calculation of the proposed FIO in heteroge-

neous media. Numerical examples demonstrate that the pro-
posed method can provide a stable and dispersion-free solu-
tion to the elastic wave equation in heterogeneous anisotropic
media.

THEORY

Following the notation of Du et al. (2014), the generic wave
equation can be expressed in the following form:„

∂ 2

∂ t2 +A
«

u(x, t) = 0 , (1)

where u is the wavefield, x is the spatial location, t is time, and
A is the a matrix operator containing material parameters and
spatial derivative operators.

The analytical solution to equation 1 can be expressed in a
one-step time stepping form

û(x, t +∆t) = eiΦ∆t û(x, t) , (2)

where û = (u− iΦ−1ut)/
√

2 is a complex-valued wavefield
and Φ≡

√
A.

For elastic anisotropic wave equations, the matrix operator A
corresponds to the matrix −Γ/ρ =−DCDᵀ/ρ , where Γ is the
Christoffel matrix, ρ is density, C is the elastic stiffness tensor
expressed in Voigt notation as a 6× 6 matrix, and D is the
derivative matrix operator given by

D =

24∂x 0 0 0 ∂z ∂y
0 ∂y 0 ∂z 0 ∂x
0 0 ∂z ∂y ∂x 0

35 . (3)

In the Fourier (wavenumber) domain, A takes the form Γ̃/ρ af-

ter i2 cancels the negative sign, i.e.,−Γ
F−→ Γ̃. In orthorhombic

media, using the chain rule, Γ̃ can be expressed as follows:

Γ̃ =

26664
C11k2

x +C66k2
y +C55k2

z (C12 +C66)kxky (C13 +C55)kxkz

(C12 +C66)kxky C66k2
x +C22k2

y +C44k2
z (C23 +C44)kykz

(C13 +C55)kxkz (C23 +C44)kykz C55k2
x +C44k2

y +C33k2
z

37775−
(4)

i

26664
∂xC11kx +∂yC66ky +∂zC55kz ∂xC12ky +∂yC66kx ∂xC13kz +∂zC55kx

∂yC12kx +∂xC66ky ∂xC66kx +∂yC22ky +∂zC44kz ∂yC23kz +∂zC44ky

∂zC13kx +∂xC55kz ∂zC23ky +∂yC44kz ∂xC55kx +∂yC44ky +∂zC33kz

37775 .

When the Earth model is smooth, i.e., the derivatives of stiff-
nesses can be dropped, matrix Γ̃ is real-valued and symmet-
ric positive definite. It can be diagonalized with its eigenval-
ues corresponding to the squared phase velocities of separate
wave modes and its orthogonal eigenvectors corresponding to
the polarization directions. In strongly heterogeneous media,
both the eigenvalues and eigenvectors of Γ become complex-
valued. Writing the eigendecomposition of A as follows:

A = QVQ−1 =
ˆ
a1 a2 a3

˜24ν2
1 0 0
0 ν2

2 0
0 0 ν2

3

3524â∗1
â∗2
â∗3

35 , (5)
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elastic wave extrapolation

Φ can be found by taking the square root of the eigenvalues
in the diagonal matrix. Analogously, the wave extrapolation
operator, eiΦ∆t , can be computed as:

eiΦ∆t û(k) =
X

i=1,2,3

eiνi∆taiâ∗i û (6)

=
ˆ
a1 a2 a3

˜24eiν1∆t 0 0
0 eiν2∆t 0
0 0 eiν3∆t

3524â∗1
â∗2
â∗3

35 û

=

24ŝxx ŝxy ŝxz
ŝyx ŝyy ŝyz
ŝzx ŝzy ŝzz

35 û ,

In heterogeneous media, the eigenvalues and eigenvectors de-
pend on both space and wavenumber. We propose to apply
the lowrank decomposition (Fomel et al., 2013) on the mixed-
domain components ŝi j, without explicitly decomposing the
wavefield into different wave-modes. One-step lowrank method
can handle complex-valued propagation operator (Sun et al.,
2016).

NUMERICAL EXAMPLES

(a) (b)

Figure 1: Wavefield snapshot of wavefield propagation in
a two-layer orthorhombic model using the lowrank RITE
method with (a) and without (b) accounting for the gradient
of stiffnesses.

To test the proposed method, we construct a two-layer orthorhom-
bic model on a 100×100×100 grid with the density-normalized
stiffness tensor of the first layer given by Schoenberg and Hel-
big (1997), and the second layer having twice the stiffness val-
ues of the first layer. The spatial sampling rate in all directions
of the grid is 10 m. A displacement source is oriented at 45◦ tilt
and 45◦ azimuth and injected at x = 0.5 km, y = 0.5 km ,z =
0.4 km. The source wavelet has a peak frequency of 35 Hz.
Figure 1 shows wavefield snapshots taken at t = 0.15 s. Be-
cause of the strong contrast at the medium interface, the trans-
mitted and reflected waves calculated by the proposed method
considering the stiffness gradient demonstrates noticeable am-
plitude and phase differences compared with the waves calcu-
lated by ignoring the gradient terms.

CONCLUSIONS

We have presented a general formulation for accurate and sta-
ble elastic wave extrapolation in strongly heterogeneous and
anisotropic media. The proposed method employs a one-step
lowrank approximation to efficiently apply the FIO defined
by the complex-valued eigenvalues and eigenvectors of the
Christoffel matrix. Numerical examples show that the pro-
posed method improves wave extrapolation accuracy by con-
sidering gradients of the model stiffnesses.
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Simulation of anisotropic wave propagation with anisotropic attenuation
Tieyuan Zhu
Department of Geosciences, Pennsylvania State University

SUMMARY

I present a time-domain velocity-stress formulation of the vis-
coelastic anisotropy wave equation, which holds for arbitrar-
ily anisotropic velocity and attenuation. Using the frequency-
independent Q model, anisotropic attenuation is mathemati-
cally expressed via factional time derivatives. Fractional time
derivatives are solving using the Grünwald-Letnikov approxi-
mation. I validate numerical solutions by comparing with the-
oretical attenuation values. Simulations in 2D and 3D models
are presented.

INTRODUCTION

Modeling wave propagation in anisotropic media is the funda-
mental element of full-waveform inversion/imaging of anisotropy
parameters. Considering only velocity anisotropy, wave propa-
gation are well described by the anisotropic elastic wave equa-
tion. In the past decades, this has been extensively studied,
e.g. the most simple transversely isotropy (TI), the practical
acoustic TI (Alkhalifah, 2000), and general anisotropy (Car-
cione et al., 1992). In addition, the medium usually exhibits
anisotropic attenuation behavior, which has been observed in
lab experiments (e.g., Tao and King, 1990) and some field
case studies (e.g., Liu et al., 1993; Lynn et al., 1999). To
numerically modeling such a wave behavior (attenuation is
directional-dependent), a wave equation is needed.

Carcione (1992) generalize Backus averaging to the anelastic
case, obtaining the first model for Q-anisotropy. The constant-
Q anelastic behavior is approximately described by a set of
standard linear solid elements. Similarly, Bai and Tsvankin
(2016) use the generalized standard linear solid model to pro-
duce nearly constant values of all components of the quality-
factor matrix within a specified frequency band. But they re-
place isotropic relaxation times τ by anisotropic relaxation times
τi j that explicitly represent anisotropic attenuation. The corre-
sponding wave equation is based on a set of anisotropic vis-
coelastic wave equations parameterized by memory variables.

Alternatively, the frequency-independent Q model (Kjartans-
son, 1979) is simpler and can be used to represent the atten-
uation behavior in wave equation (Carcione et al., 2002; Zhu
and Harris, 2014). Carcione et al. (2002) and Carcione (2009)
derived a viscoacoustic wave equation for P-wave and a vis-
coelastic wave equation for simulating P-wave and S-wave at-
tenuation. In this study, I extend the formulation to the general
viscoelastic anisotropic wave equation. I use the elastic stiff-
ness tensor along with the anisotropic Qi j matrix to define a
complex stiffness matrix. Based on the property of the frac-
tional derivative, the convolution is replaced by the fractional
time derivatives in the constitutive relation. The derived time-
domain velocity-stress formulation of viscoelastic anisotropic

wave equation holds for arbitrarily anisotropic velocity and
attenuation. I investigate the accuracy of the proposed wave
equation by comparing with exact solutions. Finally I show
simulations with 2D VTI and 3D orthorhombic attenuation.

CONSTITUTIVE RELATION

The generalized time-domain constitutive relation for the vis-
coelastic anisotropic medium is introduced (Carcione, 2014)

σi j(x, t) = ψi jkl(x, t)∗∂tεkl(x, t) (1)

where t is the time variable, x is the position vector, ∗ denotes
time convolution, ψ are the components of the relaxation func-
tion tensor, and ε is the strain tensor. i, j,k, l = 1,2,3. The
fourth-rank tensor ψi jkl contains all the information about the
behavior of the medium under infinitesimal deformations. In
the most general case, the number of components is 21.

Considering the frequency-independent (constant-Q) model (Kjar-
tansson, 1979), the relaxation function is defined

ψ(t) =
M0

Γ(1− t)
t
t0

−2γ

H(t) (2)

where M0 is a bulk moduls. Γ is Euler’s Gamma function, t0 =
1/ω0 where ω0 is a reference frequency, γ is a dimensionless
parameter, and H is the Heaviside step function. Therefore, in
isotropic acoustic media, the constitutive equation is written as
in terms of fractional derivative (Caputo and Mainardi, 1971;
Carcione et al., 2002)

σ(t) = M0ω
−2γ

0 ∂
2γ

t ε(t) (3)

where γ = arctan(1/Q)/π . The fractional time derivatives is
solved by the Grünwald-Letnikov approximation

∂
γ

t ε(t)≈ ∆t−γ

γ∑
m=0

(−1)m
(

N
j

)
ε(t −m∆t) (4)

The fractional derivative of wavefield variable ε at time t de-
pends on all the previous values of ε . This memory property of
the fractional derivative is, associated to field attenuation, in-
crease the computational costs, especially saving 4D (x,y,z, t)
field variables in the three-dimensional problem. One strategy
of reducing the costs is to truncate the binomial coefficients for
m exceeding an integer N (total time step) (Podlubny, 1999).
This allows truncation of the sum at m = L, L � N, where L is
the effective memory length.

ANISOTROPIC Q

In transversely isotropic (TI) media, the elastic model is fully
characterized by five elastic parameters and density. To con-
sider the medium anelasticity, I adopt the definition: anisotropy

17th International Workshop on Seismic Anisotropy

7



Q is defined as the ratio of the real and the imaginary parts of
the corresponding stiffness coefficient (Carcione, 1992; Zhu
and Tsvankin, 2006), Qi j =

Re(pi j)
Im(pi j)

, where pi j is the complex
stiffness tensor. Therefore, five additional anelastic parame-
ters are needed to characterize the viscoelastic behavior. In
orthorhombic media, nine additional anelastic parameters are
needed to describe the viscoelastic behavior.

With the stiffness matrix, using equations 2 and 3 yields the
constitutive relation of 3-D viscoelastic-anisotropic media

σ11
σ22
σ33
σ23
σ13
σ12

=


D11 D12 D13 D14 D15 D16
0 D22 D23 D24 D25 D26
0 0 D33 D34 D35 D36
0 0 0 D44 D45 D46
0 0 0 0 D55 D56
0 0 0 0 0 D66




ε11
ε22
ε33
2ε23
2ε13
2ε12

 .

(5)
where Di j =Ci jω

−2γi j
0 ∂

2γi j
t , and γi j = arctan(1/Qi j)/π . Equa-

tion 5 plus the momentum conservation equations constitute
the full viscoelastic anisotropic wave equation with both anisotropic
velocity and attenuation. The first-order time derivatives are
solved by staggered-grid finite-difference and space deriva-
tives are solved by pseudo-spectral Fourier method.

NUMERICAL EXAMPLES

To validate numerical solutions of the viscoelastic anisotropic
wave equation, I generate the wavefield in a homogeneous vis-
coelastic VTI medium and then estimate P- and SV-wave qual-
ity factors using the spectral-ratio method and compare to the
exact solution.

The model size is 256×256. The spacings in x and z directions
are 10 m. The model anisotropic parameters are vp = 6.0 km/s,
vs = 3.0 km/s, ρ = 2.0 g/cm3, ε = 0.2, and δ = 0.1. The
anisotropic Qi j are Q11 = 35, Q13 = 50, Q33 = 50, and Q55 =
30. The source using a 30 Hz Ricker wavelet is located in
the center of the model. Figures 1a and 1b show snapshots of
anisotropy wave propagation at 300 ms. The case (Figure 1a)
with attenuation show the reduced amplitude.

Receivers are circle-positioned and 1 km away from the cen-
ter of model. Figure 2 compares estimated quality factors to
theoretical solutions. Estimations of P-wave attenuation (cir-
cle) almost perfectly match the exact curve (solid line). In the
diagonal direction, estimations of SV-wave attenuation devi-
ate slightly from the exact solution. This is likely caused by
complex SV-wave in these angles in which attenuation esti-
mation may not be accurate. Figure 3 shows two snapshot of
3D anisotropic wave propagation with orthorhombic attenua-
tion (a) (Q11 = 35, Q12 = 35, Q13 = 35,Q22 = 35, Q23 = 35,
Q33 = 50, Q44 = 50, Q55 = 35, and Q66 = 30) and without
attenuation (b).

CONCLUSION

I present a viscoelastic anisotropic wave equation that is able
to characterize phase and attenuation anisotropy. The wave

equation holds for arbitrary anisotropy. I show that numerical
solutions approximate to the exact ones. Simulations in 2D
and 3D synthetic models (including TI and orthorhombic) are
presented.
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(a) (b)

Figure 1: Snapshots (Vx component) of anisotropy wave prop-
agation with TI attenuation (a) and without attenuation (b).

  0.01

  0.02

  0.03

  0.04

30

210

60

240

90

270

120

300

150

330

180 0

1/Q
p

 

 

Exact

Numerical

(a)

  0.01

  0.02

  0.03

  0.04

30

210

60

240

90

270

120

300

150

330

180 0

1/Q
s

 

 

Exact

Numerical

(b)

Figure 2: Attenuation 1/Q of P-wave (a) and S-wave (b) as
functions of the phase angle. Circles are estimations from nu-
merical simulations using spectral ratio. Solid lines denote ex-
act solution from Qi j definition.

(a) (b)

Figure 3: Snapshots (Vx) of anisotropy wave propagation with
orthorhombic attenuation (a) and without attenuation (b).
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P-, SV and PSV-wave reflections from a thin VTI layer 
Qi Hao*, NTNU; Alexey Stovas, NTNU 

Summary 
We present the approximate formulae for reflection 
coefficients from a thin, transversely isotropic layer with a 
vertical symmetry axis (VTI) embedded in a VTI 
background. We discuss the assumptions to derive the 
formulae. A numerical example illustrates the comparison 
between approximate formulae and exact solution. 

Introduction 
Characterizing the plane wave reflection from an 
anisotropic layer is useful for reservoir monitoring and 
parameters inversion. For horizontally layered media, the 
reflection and transmission of plane waves can be derived 
by using the transfer matrix method. Brekhovskikh (1980) 
systematically studied the wave propagation for 
horizontally layered, isotropic media. The reflection 
coefficients from a thin VTI layer can also be derived by 
transfer matrix method. However, the exact formulae for 
the reflection coefficients suffer from the algebraic 
complexity, which is not easily to be utilized in seismic. 
In this expanded abstract, we study the reflection of 
incident plane P- and SV-waves from a thin, homogeneous 
VTI layer embedded in a homogeneous VTI background 
(see Figure 1). We adopt Thomsen’s (1986) notations to 
describe a VTI medium. We use the following parameters: 

0P  and 0S  denote the velocities of vertically propagating 

P and S-waves;   and   denote Thomsen (1986) 
anisotropy parameters. The density of medium is denoted 
by  . For simplicity, the P-mode reflection of an incident 
P-wave is denoted by PP-wave; the SV-mode reflection of
an incident P-wave is denoted by PS-wave; the SV-mode
reflection of an incident SV-wave is denoted by SS-wave.

Three assumptions 
By an analogy with the weak-contrast approximations for 
VTI reflection coefficients (e.g. Thomsen, 1993) at an 
interface, we consider the following assumptions to derive 
the approximate formulae for reflections coefficients from 
a thin layer.  
First, we assume the weak contrast in elastic properties 
(including density  , P-wave vertical velocity 0P and

SV-wave vertical velocity 0S ) at the interface between the 
thin layer and the background, 

0

0

1p

p





 , 0

0

1s

s



  , 1



  ,   (1) 

where ( ) ( )M A     , and ( ) ( )( ) / 2M A     denote 
the difference and the average of medium parameter   at 
the interface between the layer (corresponding to the 

superscript M) and the background (corresponding to the 
superscript A).  
Second, we assume that the weak anisotropy assumption is 
valid for both layer and background. This means that  

( ) 1  , ( ) 1   ,     (2) 

where the superscript   is taken as M  and A  for the 
layer and the background. 
Third, we assume that the VTI layer is very thin such that it 
satisfies the following inequality, 

( ) ( ) 1M M
P Shq hq    ,        (3) 

where h  denotes the layer thickness;   is the angular 

frequency; ( )M
Pq  and ( )M

Sq  correspondingly denote the 

vertical slowness components of P- and SV-waves in the 
layer, which are functions of the horizontal slowness 
component.  
From several numerical tests, we find the following 
condition to replace inequality 3 for simplicity,  

( )
00.2 M

Ph   .         (4) 

AVO-type formulae for reflection coefficients 
We start with the exact formulae for reflection coefficients 
and consider the assumptions from the previous section. 
We expand the exact reflection coefficients with respect to 
the contrasts in elastic parameters according to equation 1, 
the anisotropy parameters in equation 2, and the layer 
thickness. This results in the AVO-type formulae for 
reflection coefficients from a thin VTI layer.  
The first-order approximation for the PP-wave reflection 
coefficient, 

(1)

0

( ) ( )PP P PP P
p

i h
R R

 


  ,  (5) 

where P denotes the angle of incidence of P-waves; i

denotes the imaginary unit, and 

2 20 0 0

0

(1)

0 0

2

2
0

2 2

0tan 4sin
cos

sin (tan

( )

)

P PPP P S

P

P

P P
P P P

P

Z G

Z G

R  
 









 


 

  
 

   

 .   (6) 

Here, 0 0P PZ   denotes the P-wave impedance; and 
2

0 0SG   denotes the shear modulus. 

The second-order approximation for the PP wave reflection 
coefficient is given by 

2 2
(1) (2)

2
0 0

( ) ( ) ( )PP P PP P PP P
p P

i h h
R R R

   
 

   ,          (7) 

where  
(2) (1)cos( ) ( )PP P PP PPR R   .  (8) 
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The first-order approximation for the SS-wave reflection 
coefficient is given by 

(1)

0

( ) ( )SS S SS S
s

i h
R R

 


  ,                                (9) 

where S  denotes the angle of incidence of SV-waves, and 

0 0
2

0 0

2

(1)

2
0

2
0

cos(2 )
(1 2cos(2 ))

cos cos

          sin ( )

( ) SSS S S
S

S S

P
S

S

S

GR

G

 
  

  






 
 

   

 

 .  (10) 

The second-order formula for the SS-wave reflection 
coefficient is given by 

2 2
(1) (2)

2
0 0

( ) ( ) ( )SS S SS S SS S
p S

i h h
R R R

   
 

   ,     (11) 

with 
(2) (1)cosSS SS SR R  .                          (12) 

The first-order approximation for the PS-wave reflection 
coefficient is given by 

(11) (12)
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,(15) 

where 0 0arcsin( sin / )S S P P     denotes the angle of 
reflection of SV-waves in the average isotropic medium.  
The second-order formula for the PS-wave reflection 
coefficient is given by 

(11) (12)

0 0

2 2 2 2 2 2
(21) (22) (23)

2 2
0 0 0 0

( ) ( ) ( )

            ( ) ( ) ( )

PS P PS P PS P
P S

PS P PS P SS P
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   
 

    
   

 

  
.(16) 

 
Examples 
We design a thin layer model embedded in an unbounded 
VTI background. The parameters of the thin layer include: 

( )
0 3.5 /M

P km s  , ( )
0 1.6 /M

S km s  , ( ) 33.0 /M g cm  , 
( ) 0.1M  , ( ) 0.05M  , 16.7h m . The parameters of the 

background include: ( )
0 3.0 /A

P km s  , ( )
0 1.6 /A

S km s  , 
( ) 32.6 /A g cm  , ( ) 0.1M   and ( ) 0.05M  . The 

angular frequency of the waves is 30Hz  . Figures 2 to 
4 indicate that (1) first-order formulae cannot be used to 
describe the phase change due to the existence of the layer; 
(2) the second-order formulae are relatively accurate.  

 
Conclusions 
The propose simple approximate formulae provide an 
analytic perspective for the influence of the change in VTI 
parameters on the PP-, SS- and PS-wave reflection 
coefficients computed from the thin VTI layer. 
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Figure 1. A schemetic plot for the scattering of an incident plane P-
wave by a horizontal VTI layer (M) embeded in a VTI background 
(A).  
 

  

Figure 2. The magnitude (left) and phase (right) of the PP-wave 
reflection coefficient as a function of the angle of incidence. The 
red, blue and brown lines correspond to the exact solution, the 
first-order formula and the second-order formula, respectively.  
 

 

Figure 3. Similar to Figure 2 but for the SS-wave reflection 
coefficient.  
 

  

Figure 4. Similar to Figure 2 but for the PS-wave reflection 
coefficient.  
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Imaging crust in northeast part of Tibetan Plateau and seismic anisotropy from ambient noise 

data 
Qiong Wang*, Yuan Gao

Institute of Earthquake Science, China Earthquake Administration, Beijing, China. 

Summary 

We collected continuous seismic data recorded between 

2011 and 2012 by 118 broadband stations from China 

Digital Seismic Network (CDSN) to image the crustal 

structure and azimuthal anisotropy beneath the northeast 

part of Tibetan Plateau. Rayleigh wave empirical Green’s 

functions are extracted from the interstation cross-

correlation of vertical component records. Phase velocities 

and azimuthal anisotropy are then obtained from the 

empirical Green’s functions in 8 to 35s period. Furthermore, 

by adopting the pure-path Rayleigh-wave dispersion curves 

for each grid node, we finally construct the 3D shear wave 

velocity in the northeastern Tibetan Plateau. The results 

show that at period 8s and 12s, sediments feature much 

slower seismic velocities than crystalline rocks, so Qaidam 

basin shows low velocity. The anisotropy in this period is 

consistent with the regional fault, which means the 

polarization direction of the fast wave goes along the strike 

of the fault. At period 18 to 25s, the Qiangtang and 

Songpan-Ganzi terranes become low velocities gradually. 

The anisotropy in this period is similar to the last one. And 

at period 30 to 35s, the phase velocities are mainly 

influenced by the Moho depth. Meanwhile, the fast 

polarization in the Songpan-Ganzi terrane displays a 

clockwise rotation in this range. Through vertical profiles 

of shear wave velocity, we find that the Songpan-Ganzi 

terrane is associated with a low velocity at middle-lower 

crust, but it terminates in Qaidam basin. For the azimuthal 

anisotropy, we find that with the period increasing, the 

polarization direction is consistent, which suggest that a 

vertically coherent deformation within the lithosphere 

beneath the margin of Tibetan plateau. 

Introduction 

The large-scale surface deformation, uplifting and faulting 

occurring at the NE margin of the Tibetan plateau are 

generally believed to be caused by the continuous collision 

between the India and Eurasia since ~50 millions years ago. 

However, the style and amount of the subsurface 

deformation induced by the collision, especially those 

inside the lower crust and upper mantle are still debated, 

which also is the hot topics in study of the seismology and 

geodynamics. Many models have been proposed to explain 

the deformation of the Tibetan Plateau, such as uniform 

lithospheric shortening (England and Houseman, 1986) and 

crustal channel flow (Clark and Royden, 2002). The first 

model suggests a vertically coherent deformation across the 

entire lithosphere, while the second model means lower 

crustal flow is assumed to split into two branches: one 

channel thought to flow to the south of Longmenshan fault 

and finally to the Yungui plateau, and the other is believed 

to flow along the Qinling orogen between the Ordos block 

and Sichuan basin. 

Ambient noise tomography is an emerging field of 

seismological research in recent years, comparing to 

seismic surface wave, the main advantage of ambient noise 

tomography is that it can retrieve velocity dispersion at 

relatively short period without seismic source location, 

which is more sensitive to shallow crustal structure. 

Therefore, shallow surface wave tomography using 

ambient noise is now widely applied (Fang et al, 2009; 

Shapiro et al., 2005; Nikolai et al., 2005).  

In this study, we focus on a complex junction that 

connects the margin of the Tibetan plateau with the Alxa 

block, Ordos plateau and the Qinling orogen, where 

broadband seismic data of 118 stations are available 

(Figure 1).  We measure Rayleigh wave velocity, azimuthal 

anisotropy and shear wave velocity at this region to 

investigate the crustal structure and deformation beneath 

the NE margin of the plateau and its surrounding areas. 

Figure 1:  Geographic locations of the CDSN stations (red 

triangles) are shown with topography of the NE Tibetan plateau 

and surrounding area. The inset in the top left corner shows the 
tectonic map of East Asia with the red box showing the location of 

our study area. The purple arrows represent the subduction of the 

Pacific and Philippine plates as well as the collision of the Indian 
plate at the east and southwest sides of China, respectively.The 

blue arrows indicate the GPS vectors (Gan et al. 2007). NCB and 
SCB stand for North China Block and South China Block, 

repectively. 
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Crustal structure and anisotropy beneath NE Tibet 

 

Theory and/or Method 

 

The data processing of retrieving Rayleigh wave phase 

velocity from ambient noise used in our study is followed 

by Yao et al. (2006) and we just estimate Rayleigh wave 

Green’s Function from vertical component which has 

relatively stronger energy. The resolution of ambient noise 

tomography is limited primarily by the number of well-

distributed stations. 

The main procedures include single station data 

preparation, cross-correlation and stacking, phase velocity 

dispersion measurement and phase velocity and azimuthal 

anisotropy. Continuous data are decimated to one sample 

per sec and are then filtered in the period band from 5 to 

50s. Time domain normalization applying running absolute 

mean normalization method, with the purpose of 

suppressing the influence of earthquake signals to the 

cross-correlation.  

Generally, there is a pronounced asymmetry between 

positive and negative time lags of each cross-correlation. 

This asymmetry originates from an inferred non-uniform 

distribution of source locations of noise. To reduce the 

influence of the noise source, we compress the two-sided 

signal into a one-sided signal by averaging the positive and 

negative time lags to obtain the “symmetric” signal. 

We thus obtain 5773 Rayleigh wave dispersion curves in 

the period 5 to 35s on the basis of image analysis technique, 

and this method can trace the whole curve quickly and 

greatly enhance the accuracy of phase velocity 

measurements compared to traditional tracing point method. 

And then, based on the relationship between the phase 

velocity and azimuthal anisotropy, we finally invert the 

velocity and anisotropy at the same time following Smith 

and Dahlen’s (1973) theory. 

 

Conclusions 

 

We analyzed a large amount of continuous data to 

investigate crustal structure and seismic anisotropy beneath 

the NE Tibetan Plateau and its surrounding areas. We 

found that there exist two low-velocity zones in the 

northeast Tibetan Plateau, one is Songpan-Ganze block and 

the other is northwest Qilian Qorgen. Meanwhile, the low 

velocity zones weakened in the Kunlun fault and 

terminated in Qaidam basin, which infer that Kunlun fault 

may be the north boundary of Sonpan-Ganze low-velocity 

zone. We also found that with the period increasing, the 

polarization direction is consistent. These observations 

combining other research suggest that the crust and mantle 

lithosphere are mechanically coupled and deformed 

coherently in responding to the India-Asia collision, and 

therefore the whole lithospheric shortening is likely the 

dominant mechanism for the observed large uplifting and 

crustal thickening within the margin. 
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Shear-wave anisotropy in northeast part of Tibetan Plateau 
Yuan Gao, Qiong Wang, Yutao Shi 

Institute of Earthquake Science, China Earthquake Administration, Beijing, China. 

Summary 

This study adopts shear-wave splitting from local events in 

the upper-middle crust, splitting of XKS (SKS, PKS and 

SKKS) phases to detect seismic anisotropy in the 

lithosphere and asthenosphere as well as receiver functions 

from teleseismic events to detect seismic anisotropy in the 

whole crust. Seismic anisotropy in the northeast margin of 

Tibetan Plateau shows anisotropy in the crust is almost 

equal to that in the upper mantle. 

Introduction 

Tibetan Plateau intensely lifts within the Himalayan 

tectonic evolution. With the tectonic process, strong 

seismic anisotropy were observed by different reserachers. 

There are many large active faults and strong earthquakes 

in the northeast margin of Tibetan Plateau, where is located 

in convergence zone among the Tibetan block, Alxa block, 

Ordos block and South-China block. Shear-wave splitting 

is one of very effective ways to detect Shear-wave 

anisotropy in the crust and in the mantle. In addition, 

receiver functions also always are adopted to detect seismic 

anisotropy. In our studies, shear-wave splitting, as well as 

receiver functions, are applied to analyze seismic 

anisotropy in northeast part of Tibetan Plateau. 

Theory and/or Method 

In northeastern edge of Tibetan Plateau, the crust 

movement from GPS data is clearly towards NE and NEE, 

as well as rotation clockwise. However it is unclear of the 

deep deformation. We have known that lithospheric 

deformation and asthenospheric flow, also including typical 

structure, can lead to observed seismic anisotropy in the 

upper mantle.  

Many studies suggest seismic anisotropy is effective to 

detect the stress, deformation and movement process in the 

crust and also in the mantle. We adopt shear-wave splitting 

from local events to detect seismic anisotropy in the upper-

middle crust, adopt receiver functions from teleseismic 

events to extract seismic anisotropy in the whole crust. And 

we also use splitting of XKS (SKS, PKS and SKKS) phases 

to detect seismic anisotropy in the lithosphere and 

asthenosphere, i.e. upper mantle plus crust. GPS data are 

also adopted to analyze surface movement and compare to 

deep deformation by seismic anisotropy. 

Conclusions 

Results from shear-wave splitting in the crust and XKS 

splitting indicate the anisotropic pattern in the west part in 

the northeast margin of Tibetan Plateau is different to that 

in the east part. Polarizations of fast shear-wave in the west 

part are quite different to that in the east part, which are 

some related to GPS pattern. The fast direction of XKS 

shows coherent characteristics between the west part and 

the east part. 

Figure 1:  Seismic anisotropy in the northeast margin of Tibetan 
Plateau.The upper shows the average fast shear-wave polarizations 

at stations for XKS phases (in red) and for local events (in blue 

and green). The lower are rose diagrams of equal area project, the 
left two circles are result in the west part (W) and the right two 

circles are result in the east part (E). XKS means from XKS 

phases, SWS means shear-wave splitting from local events. 
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Anisotropy in NE Tibetan Plateau 

 

We also obtained seismic anisotropy from receiver 

functions data and found significant azimuthal anisotropy 

within the crust beneath stations, with a splitting time 

between about 0.36s and 1.06s, for average 0.6s. The fast 

polarization directions aligned well with surface structures 

and consistent to the directions the fast XKS phase. 

However, the splitting time from XKS phases, i.e. time 

delay between fast and slow phase, was an average splitting 

time of 1.2s. It suggests the crustal anisotropy occupied 

heavy weight in seismic anisotropy in the crust-mantle 

system. At least, it is an observed phenomenon in the 

northeast margin of Tibetan Plateau. In addition, the time 

delays of shear-wave splitting of local events were at about 

average of 0.2s, which showed seismic anisotropy in the 

upper crust or upper-middle crust. Anisotropy in the crust is 

almost equal to that in the upper mantle. 
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Velocity model smoothing in orthorhombic media 
Alexey Stovas and Shibo Xu, NTNU, Norway 

Summary 
Certain degree of smoothness of velocity model is required 
for most ray based migration and tomography. Applying 
the conventional smoothing in model parameters results in 
the offset-dependent traveltime errors for reflected events, 
which can be large even for small contrasts in model 
parameters between the layers. This causes the shift in both 
the depth and residual moveout (RMO) of the migrated 
images. To overcome this problem in transversely isotropic 
medium with a vertical symmetry axis (VTI), the preserved 
traveltime smoothing (PTS) method was proposed earlier. 
We extend this method for orthorhombic media with and 
without azimuthal variation between the layers. We 
illustrate this method for a single interface between two 
orthorhombic layers. 

Introduction 
The velocity models for prestack depth migration (PSDM) 
are commonly built by layer-stripping with velocity 
discontinuities across the horizons. The ray tracing used in 
Kirchhoff or bean migration requires certain smoothness of 
the depth velocity model. Current industrial practice for 
smoothing is to perform a bell-shaped filter (Gonzalez and 
Woods 2008) to the step of model parameters. The 
drawback of the conventional smoothing is that the 
migrated events will shift to higher velocity layer at the 
discontinuities compared with results from the unsmoothed 
model. The errors in depth and the residual moveout 
(RMO) for the migrated images are induced by the 
smoothing process, which will cause errors in velocity 
analysis. Several approaches are proposed for this problem 
like adding the horizons in the ray-tracing process (Vinje et 
al. 1996) and combing the unsmoothed and smoothed 
models (Baina et al. 2006). The preserved traveltime 
smoothing (PTS) (Vinje et al. 2012) is proposed to solve 
this problem for TI media. It is designed to smooth the 
depth models preserving the traveltime parameters at the 
velocity discontinuities. The orthorhombic (ORT) medium 
is introduced by Schoenberg and Helbig (1997) to describe 
the fractured earth and has become a new standard to define 
model parameters to cover the azimuthal dependence of the 
traveltime surface. Tsvankin (1997) defines the elastic ORT 
model with nine parameters that can be reduced to six 
parameters in an acoustic approximation (Alkhalifah 2003). 
These parameters are vertical velocity, two NMO velocities 
defined in vertical symmetry planes and three anelliptic 
parameters. The anelliptic parameters can be defined in all 
symmetry planes (Grechka and Tsvankin 1999) or can be 
defined in terms of azimuthally dependent anellipticity 
(Stovas 2015). In addition to that, we might have one extra 
parameter responsible for azimuthal orientation of the 
symmetry planes. In this paper, we extend the PTS method 

to ORT model based on the azimuthal dependence of 
kinematic properties defined for an acoustic ORT medium 
(Stovas 2015) to preserve the traveltime parameters for 
smoothed ORT model. In case of azimuthal variations in 
the symmetry axis between the layers, the least-squares 
approximation is adopted to estimate the effective 
anellipticity parameters from this layered medium. The 
traveltime parameters are preserved for the azimuthally 
dependent ORT model, and the resulting error in traveltime 
is sufficiently small from the numerical examples. In our 
paper, we focus on defining the composite parameters only 
and use very simple Gaussian smoothing filter. 

Preserved traveltime smoothing in VTI media 
The idea behind the PTS smoothing in VTI media (Vinje et 
al., 2012) is to apply the smoothing for velocity moments, 

( )2 4
1 0 2 0 3 01 , , 1 8nmo nmon V n V V n V Vη= = = + ,       (1) 

where 
0V , 

nmoV  are the vertical and NMO velocities, and η  
is anelliptic parameter. The smoothed velocity moments 

1n , 

2n  and 
3n  can be converted back into original parameter 

space by 
( )2 2

0 1 2 1 3 1 2 21 , , 8nmoV n V n n n n n nη= = = −         .        (2) 

If the initial velocity model is isotropic, the PTS method 
results in smoothing-induced anisotropy. 

Preserved traveltime smoothing in ORT media 
For ORT model without azimuthal variations between the 
layers, the velocity moments are very similar to VTI case, 

( )
( ) ( )

2 4
1 0 2 1 0 3 1 1 0

2 4 2 2
4 2 0 5 2 2 0 6 1 2 0

1 , , 1 8 , (3)

, 1 8 , 1 4
nmo nmo

nmo nmo nmo nmo xy

n V n V V n V V

n V V n V V n V V V

η

η η

= = = +

= = + = +
where (Stovas, 2015) 

( )( ) ( )1 2 31 2 1 2 1 2 1xyη η η η= + + + − ,    (4) 

with 
3η  being the anelliptic parameter in horizontal 

symmetry plane. The conversion from the smoothed 
parameters into the model space is very similar to the VTI 
case. For ORT model with azimuth variations between the 
layers, there are nine velocity moments to be smoothed. 
The first four velocity moments are used to compute the 
vertical velocity, two NMO velocities and azimuth 
orientation. Remaining five velocity moments are used to 
compute three anelliptic parameters by least-squares 
method (Stovas, 2015). 

Numerical examples 
To illustrate the PTS method for ORT models, we select 
one interface between two ORT layers with parameters: 

0 1.5V km s= , 
1 2nmoV km s= , 

2 1.8nmoV km s= , 
1 0.1η = , 
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2 0.12η =  and 0.22xyη =  (upper layer) and 
0 2V km s= , 

1 2.5nmoV km s= , 
2 2.2nmoV km s= , 

1 0.12η = , 
2 0.15η =  and 

0.2xyη =  (lower layer). The result of application of PTS 

with Gaussian smoothing operator on ORT model with no 
azimuthal variations is shown in Figure 1. One can see that 
the shape of the smoothed velocities is very similar, while 
the behavior of the smoothed anelliptic parameters is 
slightly different (for example, different magnitude of 
overshooting at the interface). The result of application of 
PTS for ORT model (with parameters listed above and 30 
degrees azimuth variation) is shown in Figure 2. One can 
see (comparing with Figure 1) that the presence of azimuth 
has minor effect on NMO velocities, but significantly 
affects the anelliptic parameters. 

 
Conclusions 
We develop the preserved traveltime smoothing method for 
orthorhombic velocity model with and without azimuth 
variations between the layers. The method is based on the 
smoothing of velocity moments. 
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Figure 1:  No azimuthal variations. The ORT model 
parameters before (solid line) and after (dashed line) PTS. 

 

    
 

    
 

     
 

  
 
Figure 2:  30 degrees azimuth variation. The ORT model 
parameters before (solid line) and after (dashed line) PTS. 
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Wave propagation, reflection and transmission in tilt orthorhombic media
Yuandi Gan1, and Evgeni M. Chesnokov1

1 University of Houston

SUMMARY

Different tilt angles result in different velocity anisotropy on
horizontal and vertical planes. We used Christoffel equation
and Schoenberg’s solution to calculate phase and group ve-
locity, deviation angle, reflectivity, and transmissivity in tilt
orthorhombic media. We got results of phase and group veloc-
ities and deviation angle in media with varied tilt angles, and
we obtained results of reflectivity and transmissivity of plane-
wave for cases in which waves propagate from an isotropic
medium to a tilt orthorhombic medium.

INTRODUCTION

We can describe most of them by using tilt transversely isotropic
media and tilt orthorhombic media for a simplification and ap-
proximation. For a model of orthorhombic medium is more
general than one of transversely isotropic medium, our objec-
tive is to examine the anisotropy of phase and group veloci-
ties and deviation angle in a tilt orthorhombic medium, and
reflectivity and transmissivity of plane-wave from an isotropic
medium to a tilt orthorhombic medium; as well as to exam-
ine how those physical parameters change with variation of tilt
angle of a tilt orthorhombic medium.

VELOCITIES AND DEVIATION ANGLE IN TILT ORTHO-
RHOMBIC MEDIA

In this section, we studied phase velocity, group velocity, and
deviation angle of wave propagation in the homogeneous tilt
orthorhombic medium.

Christoffel equation

Phase velocity in a homogeneous medium may be calculated
from the Christoffel equation given by

(Ci jkln jnl −ρV 2δik)Uk = 0, (1)

where C is the stiffness tensor, n is a unit vector which rep-
resents the direction of wave propagation, ρ is the density, V
is the magnitude of phase velocity, δ is the Kronecker delta
function; and U represents the direction of particle displace-
ment. Group velocity can be calculated by

V (group)
j =

1
ρV

Ci jklUiUknl . (2)

Deviation angle is defined as the deviated angle of the polar-
ization in an anisotropic medium from its original direction in
an isotropic medium (Mavko et al., 2009).

Table 1: Physical parameters of the orthorhombic medium

C11 (GPa) 324.0 C22 (GPa) 198.0 C33 (GPa) 249.0
C12 (GPa) 59.0 C23 (GPa) 78.0 C13 (GPa) 79.0
C44 (GPa) 81.0 C55 (GPa) 66.7 C66 (GPa) 79.0
ρ (kg/m3) 3300
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Figure 1: Phase and group velocities (a,b,c) and deviation an-
gle (d,e,f) in tilt orthorhombic medium with tilt angle equal to
30◦ on (a,d) coordinate plane containing x1 and x3, (b,e) co-
ordinate plane containing x2 and x3, and (c,f) coordinate plane
containing x1 and x2

Numerical models

We used numerical models to show the phase velocity, group
velocity, and deviation angle in tilt orthorhombic media. We
obtained a tilt orthorhombic medium by rotating a horizontal
orthorhombic medium. The physical parameters of the hori-
zontal orthorhombic medium is shown in Table 1 (Keith and
Crampin, 1977).

The stiffness of the tilt orthorhombic medium is calculated
from that of the horizontal orthorhombic medium by using
Bond transformation method (Auld, 1990). Figure 1 and Fig-
ure 2 show those in tilt orthorhombic media with tilt angle
equal to 30◦ and 60◦, respectively.

REFLECTION AND TRANSMISSION IN TILT ORTHO-
RHOMBIC MEDIUM

We studied reflection and transmission of plane waves from an
isotropic medium to a tilt orthorhombic medium in this sec-
tion.

Calculation of reflectivity and transmissivity in anisotropic
media
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Figure 2: Phase and group velocities (a,b,c) and deviation an-
gle (d,e,f) in tilt orthorhombic medium with tilt angle equal to
60◦ on (a,d) coordinate plane containing x1 and x3, (b,e) co-
ordinate plane containing x2 and x3, and (c,f) coordinate plane
containing x1 and x2

Schoenberg and Protazio (1990) give solutions of reflectivity
and transmissivity for the plane-wave reflection and transmis-
sion problem. Reflectivity and transmissivity are expressed in
terms of stiffness, slowness, and polarization vector. We as-
sumed two horizontal components of slowness are known, we
solved for the vertical component slowness by using Equation
(1). We then substituted the slowness into Schoenberg’s solu-
tion to get reflectivity and transmissivity.

Reflectivity and transmissivity of plane waves propagating
from an isotropic medium to a tilt orthorhombic medium

We used a numerical model to examine the reflectivity and
transmissivity for varied incident angles and varied tilt angles
of tilt orthorhombic media. The model consisted of two half
spaces and one interface between them. The upper half space
was an isotropic medium; its physical parameters were shown
in Table 2. The lower half space was a tilt orthorhombic medium;
its stiffness tensor was obtained by rotating a horizontal or-
thorhombic stiffness tensor using Bond transformation. We
used P-wave as incident waves, and the reflected and transmit-
ted waves include P-, S1-, and S2 waves. Figure 3 and Figure 4
respectively show reflectivity and transmissivity as a function
of incident angle for the cases in which tilt angle of the lower
half space equal to 0◦, 30◦, 60◦, 90◦.

DISCUSSION

Base on the algorithm of reflectivity and transmissivity of an
interface between two anisotropic media, our future work will
involve multilayers. We are working on the synthetic seis-
mic diagram of a randomly layered medium consisting of tilt
anisotropic layers and porous anisotropic layers.

Table 2: Physical parameters of the isotropic medium

P-wave velocity (km/s) 10.00
S-wave velocity (km/s) 5.77
density (kg/m3) 3600
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Figure 3: Reflectivity as a function of incident angle of P-wave
incidence for varied tilt angles of the lower half space: (a) re-
flected P-wave, (b) reflected S1-wave, (c) reflected S2-wave
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Figure 4: Transmissivity as a function of incident angle of P-
wave incidence for varied tilt angles of the lower half space:
(a) transmitted P-wave, (b) transmitted S1-wave, (c) transmit-
ted S2-wave
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On the algebraic degree of general group-velocity surface

Vladimir Grechka (Marathon Oil Company)

Summary

This paper establishes the values of three apparently un-
known at present quantities: the algebraic degree, D, of
general group-velocity surface (or elementary wavefront),
the maximum number, B, of plane body waves that can
propagate along a ray in a homogeneous anisotropic solid,
and the maximum number, Cs̃, of isolated, singularity-
unrelated saddle-shaped regions of an elementary wave-
front.

Introduction

Three algebraic surfaces play fundamental role in the the-
ory of seismic wave propagation in anisotropic media:
the slowness surface, the phase-velocity surface, and the
group-velocity surface. The slowness and phase-velocity
surfaces are fairly simple, and their algebraic orders or de-
grees, defined as the orders of the polynomials represent-
ing the surfaces, are known to be equal to 6 and 12, respec-
tively (e.g., Fedorov, 1968; Musgrave, 1970). The group-
velocity surfaces, Φ(g), describing elementary wavefronts
in anisotropic media, are much more complex; they are
complex to the extent that only the upper bound of their
degree, D ≡ deg[Φ(g)] ≤ 150 (Musgrave, 1954, 1970; Fe-
dorov, 1968), is currently available.

Here, D is derived as a by-product of solving a system of
polynomial equations that express surface Φ(g) as a func-
tion of its radius vector, subsequently making it possible
to establish the value of B.

Improved upper bound for D

To obtain the group-velocity vector g of a plane body
wave, one would typically specify the unit wavefront nor-
mal n, solve the Christoffel equation

Γ(n) ·U = V 2 U (1)

for the phase velocity V and the unit polarization vector
U , and calculate g by applying its definition

g = Γ(U) · n
V
, (2)

where

Γ(n) ≡ n · a · n and Γ(U) ≡ U · a ·U (3)

are the 3 × 3 Christoffel tensors, a is the 3 × 3 × 3 × 3
density-normalized stiffness tensor, and dots denote the
dot products.

Equations 1 and 2 can be used to express g as a function of
its unit radius vector or ray r ≡ g/|g|. To compute g(r)
or, more precisely, n(r) and U(r) and then g(r) from
equation 2, it is convenient to rotate the quantities ap-
pearing in equations 1 – 3 to a coordinate frame in which
r = [0, 0, 1], take a cross product of r and equation 2,{

r ×
[
Γ(U) · n

]}
i

= 0 , (i = 1, 2) (4)

and eliminate V 2 from equations 1,

{U × [Γ(n) ·U ]}i = 0 , (i = 1, 2) . (5)

Polynomials 4, 5 comprise a system of four algebraic equa-
tions for four unknown components of vectors ñ ≡ n/n3

and Ũ ≡ U/U3.

Equations 4, linear in the components of ñ, are easily
solvable, yielding

ñi =

j + k≤ 4∑
j, k=0

α
(i)
jk Ũ

j
1 Ũ

k
2

j + k≤ 4∑
j, k=0

βjk Ũ
j
1 Ũ

k
2

, (i = 1, 2) , (6)

where the coefficients α
(i)
jk and βjk are functions of the

components of stiffness tensor a in the rotated coordinate
frame. Importantly, both numerators and denominator
in 6 are at most quartic polynomials in Ũi, (i = 1, 2),
making the degree of each equation 5 at most 10 and
the degree of system 4, 5 as a whole at most 100 – an
improvement over the bound 150 established by Musgrave
(1954, 1970) and Fedorov (1968).

The theoretically derived degree of Φ(g) is an upper
bound, D ≤ 100, tighter than the classic bound, D ≤ 150,
but still a bound. This becomes obvious when one takes
into account the central symmetry of group-velocity sur-
faces and recognizes that deg[Φ(g)] = 100, being divisible
by 4, entails the topologically implausible even number of
body waves propagating along a ray. Hence, some high-
degree monomials in equations 4 and 5 necessarily vanish.

Degree of Φ(g)

To find out the number of identically zero monomials,
system 4, 5 has been solved for numerous randomly gen-
erated triclinic models, always resulting in 43 real- and
complex-valued quadruplets ñi and Ũi, (i = 1, 2) and im-
plying the degree of general group-velocity surface to be
equal to D = 43× 2 = 86.

D, B, and cusps

The knowledge of D makes it possible to establish the
maximum number, B, of plane body waves that can prop-
agate along a ray in a homogeneous anisotropic medium
or, stating the same problem mathematically, to deter-
mine the maximum number of real-valued roots of sys-
tem 4, 5 that satisfy the inequality r · n > 0 imposed by
the elastic stability conditions. Clearly,

B =
D− C

2
, (7)

where C is maximum number of degeneracies of Φ(g) that
give rise to C/2 irremovable complex-valued roots of equa-
tions 4 and 5.

Degeneracies of Φ(g) – the cusps formed at borders
of saddle-shaped regions of Φ(g) separating its areas
of positive and negative Gaussian curvature (Musgrave,
1954) – can be split into the singularity-related, Cs, and
singularity-unrelated, Cs̃, degeneracies,

C = Cs + Cs̃ , (8)
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Degree of general group-velocity surface

equal to the maximum numbers of the corresponding iso-
lated saddle-shaped (or hyperbolic) regions of Φ(g).

The quantity Cs is exactly the maximum number of singu-
larities (defined as the wavefront normals ns along which
the phase velocities of two plane body waves coincide)
because a general (conical) singularity is always accom-
panied by a cusp. The maximum number of singularities
is 16 (e.g., Holm, 1992; Darinskii, 1994) if the centrally
symmetric vectors +ns and −ns are counted as a single
direction; therefore, Cs = 16× 2 = 32.

The quantity Cs̃ in equation 8 is to be determined.

Quantity Cs̃

Anisotropic media without singularities are extremely un-
usual and possibly do not exist in nature. Yet, Alshits and
Lothe (1979) discovered that such artificial solids could be
constructed if values of diagonal stiffness elements com-
posing the triplets {a11, a22, a33} and {a44, a55, a66} are
allowed to intermix. For instance, orthorhombic medium
that has the diagonal stiffness matrix (in arbitrary veloc-
ity squared units)

a =


18 0 0 0 0 0

8 0 0 0 0
50 0 0 0

11 0 0
SYM 14 0

13

 (9)

is an example of a solid possessing no singularities. The
importance of model 9 lies in exhibiting the maximum
possible number, Cs̃ = 16, of isolated hyperbolic regions
(Figure 1) bordered by the cuspidal edges of Φ(g).

Quantity B

Substituting the values of D, Cs, and Cs̃ in equations 7
and 8 predicts the maximum number of plane body waves
having the same ray direction to be

B =
86− (32 + 16)

2
= 19 . (10)

The maximum B = 19 is reached in strongly anisotropic
media, in which group-velocity surfaces contain pervasive
multiple branches. For example, 19 body waves propagate
along ray r = [0.548, 0.551, 0.629] in a triclinic solid spec-
ified by the stiffness matrix (in arbitrary velocity squared
units)

a =


45.60 0.93 0.89 0.10 0.07 0.07

14.44 0.88 −0.08 0.02 −0.06
44.30 −0.05 −0.04 −0.03

0.46 0.09 0.05
SYM 0.37 0.10

0.45

.

Conclusions

The findings of the paper can be summarized as follows:

• Algebraic degree of general group-velocity surface is
D = 86.

• The maximum number of plane body waves that
can propagate along a ray in any homogeneous
anisotropic medium is B = 19.

• The maximum number of isolated, singularity-un-
related hyperbolic regions of Φ(g) is Cs̃ = 16.

(a)

(b)

Fig. 1: Hyperbolic regions of group-velocity surfaces of (a) fast
and (b) slow shear-waves in orthorhombic model 9.

Both maxima, B = 19 and Cs̃ = 16, are demonstratively
realizable.

References

Alshits, V. I., and J. Lothe, 1979, Elastic waves in tri-
clinic crystals. II. Topology of polarization fields and
some general theorems: Soviet Physics, Crystallog-
raphy, 24, no. 4, 393–398.

Darinskii B. M., 1994, Acoustic axes in crystals: Crys-
tallography Reports, 39, no. 5, 697–703.

Fedorov, F. I., 1968, Theory of elastic waves in crystals:
Plenum Press (originally in Russian, 1965, Nauka).

Holm, P., 1992, Generic elastic media, Physica Scripta,
T44, 122–127.

Musgrave, M. J. P., 1954, On the propagation of elastic
waves in aeolotropic media. I. General principles:
Proceedings of the Royal Society of London, A226,
339–355.

Musgrave, M. J. P., 1970, Crystal acoustics: Holden-Day
(2nd edition, 2003, Acoustical Society of America).

– 2 –

17th International Workshop on Seismic Anisotropy

22



Second- and Fourth-order NMO Velocities in General Anisotropic Horizontally Layered Media 

Zvi Koren* and Igor Ravve, Paradigm Geophysical 

Summary 

We present a method for computing second- and fourth-

order azimuthally-dependent normal moveout (NMO) 

velocity functions )(2 V  and )(4 V , for quasi pure mode 

waves, in general anisotropic horizontally layered media, 

without making any assumption of weak anisotropy. We 

consider the dependency on both azimuth domains: 

slowness (phase-azimuth, phs ) and acquisition (offset-

azimuth, off ). The accuracy of the method is tested by 

setting our derived 2V  and 4V functions within the 

azimuthally dependent fractional asymptotic fourth-order 

traveltime approximation (Alkhalifah and Tsvankin, 1995), 

and comparing with an exact ray tracing. 

Introduction 

In previous studies (Ravve and Koren, 2016, and Koren 

and Ravve, 2016) we suggested a method to construct 

azimuthally-dependent second- and fourth-order NMO 

velocity functions in the phase-azimuth and offset-azimuth 

domains from eight global moveout coefficients, obtained 

by a Dix-like summation over the corresponding local 

coefficients of the individual layers. Note that the 

computation of the eight local parameters requires 

calculating ray velocity components which depend on the 

type of anisotropy of the given layers, while the method for 

computing the eight global parameters (Dix-like 

summation) is generic. In this work we consider pure-mode 

waves (compressional or shear), so that the traveltime 

expansion includes even functions of offset only. 

Derivation Workflow 

We introduce the following three moveout components: 

radial-offset Rh , along a given phase-azimuth, transverse-

offset Th  in the normal direction, and the corresponding 

two-way time t . For a given layer their calculation 

requires computing the three ray velocity components for 

the incidence and reflected rays, 

in
3,ray
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     (1) 

where, z is the layer thickness, and the radial and 

transverse ray velocity components are 

.cossin

,sincos

phs2,rayphs1,ray,ray

phs2,rayphs1,ray,ray
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vvv
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R




 (2) 

For a given phase-azimuth phs  and horizontal 

slowness hp , the three moveout components can be written 

in the following series expansion, 
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Coefficients yxyxyx wwwwuwwu 444442424222 ,,,,,,,  are 

too long to be listed in this abstract.  

For an individual layer it is easier to work with the opening 

angle phs  between the incidence and reflection phase 

velocities, rather than with the horizontal slowness hp . 

Then we apply the two-way azimuthally-dependent 

relationships between hp  and phs . We introduce the 

following notations: verv  , the vertical phase velocity, and 

..., verver vv  , the first, the second, etc. derivatives of the 

phase velocity magnitude with respect to zenith angle, 

computed for the normal incidence ray (with vanishing 

zenith angle of the phase velocity). Thus ..., verver vv   are

functions of the phase-azimuth alone. The two rays are 

assumed emerging from the reflection point. Thus, their 

azimuths differ by  . The azimuth of the reflection ray is 

phs , and the azimuth of the incidence ray is  phs . We 

apply the following workflow to compute the ray 

velocities: 

 Given the opening angle phs , apply Snell’s law to find

the incidence and reflection angles 
in
phs  and 

in
phs apart,
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 For each of the two rays, whose phase direction is now 

specified by two spherical angles (zenith and azimuth), 

find the phase velocity magnitude and the derivatives of 

this magnitude with respect to zenith and azimuth 
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        (5) 

 Apply the phase velocity and its derivatives to compute 

the Cartesian components of the ray velocity 

We omit here the relationships for the derivatives of the 

phase velocity magnitude computed for the directions of 

the incidence and reflection rays, and the ray velocity 

components. Their structure is similar to that of the 

incidence and reflection angles in equation 5. They are 

series of the opening angle whose coefficients depend on 

the derivatives of the phase velocity with respect to zenith 

angle, up to order four, computed for the normal incidence 

ray, phsphsphsphs ,,, vvvv  . These derivatives, in turn, are 

functions of the phase-azimuth. In the series expansion, the 

opening angle is assumed a small parameter, i.e., nearly-

vertical rays are being studied. Finally, we replace the 

opening angle with the horizontal slowness, applying 
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Since derivatives of the phase velocity up to the fourth-

order are needed, then, in the proximity of the normal-

incidence ray, the phase velocity is approximated by a 

smooth fourth-order surface defined by 15 coefficients. 

Each of them, in turn, may be computed from the 

coefficients of the Christoffel matrix. Eventually, these 15 

coefficients are combined into 8 local moveout coefficients.  

 

Tilted Orthorhombic Anisotropy 

 

Tilted Orthorhombic (TOR) anisotropy becomes an 

important representation of tilted compacted sediment 

layers with orthogonal sets of fractures.  We suggest two 

ways to compute the moveout coefficients of a TOR layer: 

a) rotate the layer to global axes and treat it as triclinic b) 

compute the coefficients in its local tilted frame. The 

results are, of course, identical. 

 

Conclusions 

 

We derived new relations for the second- and fourth-order 

azimuthally dependent NMO velocities for multi-layer 

triclinic media in the phase-azimuth and offset-azimuth 

domains. We obtain three low-order and five high-order 

local and global effective parameters, which are related by 

simple forward and inverse Dix-like transforms. The local 

coefficients depend on the stiffness matrix and layer 

thickness.  
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Prevailing-frequency approximation of the coupling ray theory for S waves  
Luděk Klimeš & Petr Bulant* 
Department of Geophysics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 
121 16 Praha 2, Czech Republic, http://sw3d.cz 

Summary 
The coupling ray theory S-wave tensor Green function is 
frequency dependent. Its prevailing–frequency approxima-
tion removes this frequency dependence and allows us to 
introduce the coupling–ray–theory travel times and the 
coupling–ray–theory amplitudes, and to process the 
coupling–ray–theory wave field in the same way as the 
anisotropic–ray–theory wave field. This simplification may 
be decisive when storing the tensor Green function at the 
nodes of dense grids. 

Introduction 
There are two different high–frequency asymptotic ray 
theories for S waves with frequency–independent 
amplitudes: the isotropic ray theory based on the 
assumption of equal velocities of both S waves, and the 
anisotropic ray theory assuming both S waves strictly 
decoupled. Here the term “different” means that the 
isotropic ray theory is not a special case of the anisotropic 
ray theory for decreasing anisotropy, and that both theories 
yield different S waves in equal velocity models. 
In the isotropic ray theory, the S–wave polarization vectors 
do not rotate about the ray, whereas in the anisotropic ray 
theory they coincide with the eigenvectors of the 
Christoffel matrix which may rotate rapidly about the ray. 
In “weakly anisotropic” media, at moderate frequencies, 
the actual S–wave polarization tends to remain unrotated 
round the ray, but is partly attracted by the rotation of the 
eigenvectors of the Christoffel matrix. The intensity of the 
attraction increases with frequency. This behaviour of the 
actual S–wave polarization is described by the coupling ray 
theory proposed by Coates & Chapman (1990). The 
frequency–dependent coupling ray theory is the 
generalization of both the zero–order isotropic and 
anisotropic ray theories and provides continuous transition 
between them. The coupling ray theory is applicable to S 
waves at all degrees of anisotropy, from isotropic to 
considerably anisotropic velocity models. The numerical 
algorithm for calculating the frequency–dependent 
coupling–ray–theory S–wave Green tensor has been 
designed by Bulant & Klimeš (2002). 
The coupling–ray–theory S–wave Green tensor is 
frequency dependent, and is usually calculated for many 
frequencies. This frequency dependence represents no 
problem in calculating the Green tensor, but may represent 
a great problem in storing the Green tensor at the nodes of 
dense grids (Klimeš & Bulant, 2013), typical for 
applications such as seismic migrations, Born 

approximation, or hypocenter determination. This 
contribution is devoted to the approximation of the 
coupling–ray–theory Green tensor, which eliminates this 
frequency dependence within a limited frequency band. 

Theory and Method 
In the vicinity of a given prevailing frequency, we 
approximate the frequency–dependent frequency–domain 
coupling–ray–theory tensor Green function (GCRT) by two 
dyadic Green functions corresponding to two waves 
described by their travel times and amplitudes calculated 
for the prevailing frequency. We refer to these travel times 
and amplitudes as the coupling–ray–theory travel times and 
the coupling–ray–theory amplitudes.  This prevailing–
frequency approximation of the coupling ray theory tensor 
Green function (GPFA) is uniquely defined by two 
conditions:   
a) at the given prevailing frequency, we require GPFA=GCRT

and
b) at the given prevailing frequency, we require the
derivative of GPFA with respect to the frequency to equal
the derivative of GCRT.
These two conditions uniquely determine coupling-ray-
theory travel times and coupling-ray-theory polarization 
vectors. We numerically calculate GCRT at the given 
prevailing frequency using the algorithm by Bulant & 
Klimeš (2002), and we calculate the derivatives of GCRT 
with respect to the frequency using the derivative of this 
algorithm (Klimeš & Bulant 2016).  The prevailing–
frequency approximation of the coupling ray theory allows 
us to process the coupling–ray–theory wave field in the 
same way as the anisotropic–ray–theory wave field. This 
simplification may be decisive when storing the tensor 
Green function at the nodes of dense grids. 
The coupling ray theory is usually applied to anisotropic 
common reference rays, but it is more accurate if it is 
applied to reference rays which are closer to the actual 
wave paths. In a generally anisotropic medium, the actual 
wave paths may be approximated by the anisotropic–ray–
theory rays if these rays behave reasonably. In an 
approximately transversely isotropic medium, we can 
define and trace the SH and SV reference rays, and use 
them as reference rays for the prevailing–frequency 
approximation of the coupling ray theory (Klimeš & Bulant 
2015). 
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Examples & Conclusions 
We tested the accuracy of the proposed prevailing–
frequency approximation of the coupling ray theory 
numerically using elastic S waves in several anisotropic 
velocity models. The additional inaccuracy introduced by 
the prevailing–frequency approximation is smaller than the 
inaccuracy of the standard frequency–domain coupling ray 
theory, see the example of synthetic seismograms in model 
QI on Figure 1.  
We used SH and SV reference rays in several models 
which are approximately transversely isotropic, and 
obtained more accurate synthetic seismograms compared to 
the case of using the common anisotropic reference rays, 
see the example of synthetic seismograms in model SC2 on 
Figure 2.   
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Figure 1: Transverse (top) and vertical (bottom) component of the 
synthetic seismograms in model QI. The prevailing–frequency 
seismograms are plotted in red, then coupling-ray-theory 
seismograms are plotted in green, and they are overlaid by the black 
Fourier pseudospectral method seismograms considered here as a 
nearly exact solution.  The prevailing-frequency seismograms 
display no further errors with respect to the frequency-dependent 
coupling-ray-theory seismograms.  
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Figure 2: Vertical components of the synthetic seismograms in 
model SC2. Top figure shows the coupling-ray-theory seismograms 
calculated along the common anisotropic reference rays plotted in 
red, and they are overlaid by the black Fourier pseudospectral 
method seismograms considered here as a nearly exact solution.  The 
bottom figure shows the coupling-ray-theory seismograms calculated 
along the approximate SH and SV anisotropic reference rays plotted 
in red, and they are again overlaid by the black Fourier 
pseudospectral method seismograms. The seismograms calculated 
along the approximate SH and SV rays display better fit with the 
Fourier pseudospectral method seismograms.  
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Theory of interval traveltime parameter estimation in layered anisotropic media
Yanadet Sripanich and Sergey Fomel, The University of Texas at Austin

SUMMARY

Moveout approximations for reflection traveltimes are typ-
ically based on a truncated Taylor expansion of traveltime
squared around zero offset. The fourth-order Taylor expan-
sion involves NMO velocities and quartic coefficients. We de-
rive general expressions for layer-stripping of both second- and
fourth-order parameters in horizontally stacked anisotropic
strata. The error of approximating effective parameters by us-
ing approximate VTI formulas can be significant in compar-
ison with the exact formulas derived in this paper. The pro-
posed Dix-type inversion formulas for interval parameter esti-
mation from traveltime expansion coefficients and the averag-
ing formulas for calculation of effective parameters are readily
applicable to 3D seismic reflection processing in layered me-
dia with arbitrary anisotropy.

TRAVELTIME EXPANSION

Bolshykh (1956) and Taner and Koehler (1969) laid the ground-
work for studies on moveout approximations by proposing to
employ the Taylor expansion of reflection traveltimes around
zero offset. In the case of horizontally stacked isotropic lay-
ers, the effective NMO velocity can be related to the interval
velocity through Dix inversion (Dix, 1955). Its 3D counter-
part was described as generalized Dix equation (Grechka and
Tsvankin, 1998). In the case of long-offset seismic data and
more complex media, the moveout nonhyperbolicity must be
considered (Fomel and Grechka, 2001). An averaging formula
for the effective quartic coefficient in VTI media and its corre-
sponding Dix-type formula for interval quartic coefficient es-
timation were studied by Hake et al. (1984) and Tsvankin and
Thomsen (1994). Several other nonhyperbolic moveout ap-
proximations have been investigated and can be related to the
generalized moveout approximation (Fomel and Stovas, 2010;
Sripanich and Fomel, 2015; Sripanich et al., 2016).

In the case of 3D orthorhombic media, several well-known
moveout approximations make use of the rational approxima-
tion (Al-Dajani et al., 1998), together with, the weak anisotropy
assumption (Pech and Tsvankin, 2004; Xu et al., 2005; Vas-
concelos and Tsvankin, 2006). For a horizontally layered model,
this approximation suggests averaging azimuthally dependent
interval quartic coefficients using the formula for VTI media,
which is justifiable only when the azimuthal anisotropy is mild
(Al-Dajani et al., 1998; Vasconcelos and Tsvankin, 2006). In
this paper, we propose a framework for deriving exact expres-
sions for averaging interval traveltime coefficients and also ex-
act Dix-like layer-stripping formulas for interval parameter es-
timation in 3D layered media with arbitrary anisotropy.

Assuming the Einstein repeated-indices summation conven-
tion, we can expand the squared two-way traveltime into a Tay-
lor series of full offset xi = 2hi (i = 1 or 2 in 3D) around zero

offset as follows:

4t2(xi)≈ 4t2
0 +ai jxix j +ai jklxix jxkxl + ... , (1)

where

ai j = t0ti j , (2)

ai jkl =
1

16

“
ti jtkl +

t0
3

ti jkl

”
. (3)

Here, t denotes one-way traveltime, t0 is t along the vertical
axis, hi denotes half offset, ti j = ∂ 2t

∂hi∂h j
and ti jkl = ∂ 4t

∂hi∂h j∂hk∂hl

are second- and fourth-order derivative tensors, respectively.
Both tensors are symmetric thanks to the symmetry of mixed
derivatives. Equation 1 is valid when pure-mode reflections
with source-receiver reciprocity are considered.

In the case of horizontally stacked layers, the half-offset and
two-way traveltime can be expressed in terms of horizontal
slownesses p1 and p2 in h1 and h2 directions as follows:

hi(p1, p2) = −
NX

n=1

D(n)
∂Q(n)(p1, p2)

∂ pi
, (4)

2t(p1, p2) = 2 p1h1 + p2h2 +
NX

n=1

D(n)Q(n)(p1, p2)

!
,

where D(n) and Q(n)(p1, p2) denote the thickness and the verti-
cal slowness of the n-th layer. The general dependence Q(n)(p1, p2)
follows directly from the Christoffel equation. Throughout the
text, we use the subscript index (n) to indicate the correspond-
ing layer. The upper-case and lower-case letters denote interval
and effective parameters respectively.

INTERVAL PARAMETER ESTIMATION

Using equation 4 and applying the chain rule, we can differen-
tiate the one-way traveltime t with respect to half offset hi to
derive the following expressions at zero offset (pi=0):

ti|h=0 = 0 , (5)

ti j|h=0 = gi j , (6)

ti jk|h=0 = 0 , (7)

ti jkl |h=0 = −gl̂lgk̂kgimhmm̂,k̂l̂gm̂ j , (8)

where the derivatives with respect to p1 and p2 are represented
by comma ( ∂

∂ pi
corresponds to , i), gi j denotes ∂ pi

∂h j
, and k̂, l̂,

m̂ represent dummy indices. Equations 5-8 can be substituted
into equations 2 and 3 leading to

ai j = t0gi j , (9)

ai jkl =
1

16

“
gi jgkl −

t0
3

gl̂lgk̂kgimhmm̂,k̂l̂gm̂ j

”
. (10)

Equations 9 and 10 represent the most general forms of the
traveltime derivatives for pure-mode reflections in horizontally
layered media with arbitrary anisotropy.
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Interval parameter estimation

Letting elements of the matrix inverse of ai j be denoted as b ji
and considering the second-order term (equation 9) with direct
accumulations of traveltime and offset, we can deduce

B ji(n) =
t0(n)b ji(n)− t0(n−1)b ji(n−1)

t0(n)− t0(n−1)
. (11)

where T0(n) = t0(n)− t0(n−1) and B ji(n) denote the vertical one-
way traveltime and the inverse of interval matrix Ai j(n) in the
n-th layer, and t0(n) and b ji(n) denote the effective values of
the same two parameters at the bottom of the n-th layer. Equa-
tion 11 is referred to as the generalized Dix equation (Tsvankin
and Grechka, 2011). We can turn to equation 10 for the quar-
tic coefficients and follow an analogous procedure, where only
the direct accumulation of hmm̂,k̂l̂ term needs to be considered
because other terms can be simply related to b ji. Therefore,
the interval quartic coefficient Ai jkl(n) in the n-th layer can be
given as follows:

Ai jkl(n) =
1

16

„
1

T 2
0(n)

Ai j(n)Akl(n)− (12)

1
3T 3

0(n)
Al̂l(n)Ak̂k(n)Aim(n)Hmm̂,k̂l̂(n)Am̂ j(n)

«
.

Thus, the second- and fourth-order interval coeffcients for the
traveltime expansion can be found from equations 11 and 12
respectively.

To test the accuracy of the previously suggested approxima-
tions (Al-Dajani et al., 1998; Xu et al., 2005) for computing
effective coefficients based on VTI averaging against the ex-
act expressions, we consider two three-layered models (Sri-
panich and Fomel, 2016). Figure 1 shows the resultant az-
imuthal error plots of the quatic term ai jklxix jxkxl/r4 where

r =
q

x2
1 + x2

2 denotes the offset along the CMP line. The VTI
based approximation produces small errors when applied in
weak anisotropic media but grow noticeably with the strength
of anisotropy. The separate effects from pseudoacoustic ap-
proximation alone are shown in the same figures with large-
dashed blue lines. It can be seen from the results that the error
from pseudoacoustic approximation dominates the error from
the VTI averaging formula in media with a higher degree of
anisotropy. The total error on the quartic term ai jklxix jxkxl
can be computed from the azimuthal error amplified by r4 and
grows with larger distance r along the CMP line. The proposed
interval parameter estimation formulas (equations 11 and 12)
are exact and produce results within computational accuracy.
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Figure 1: Azimuthal relative error of the quatic term

ai jklxix jxkxl/r4 where r =
q

x2
1 + x2

2 denoting the source-
receiver distance along the CMP line in a) layered weak and
b) layered strong model based on methods by Al-Dajani et al.
(1998) (small-dashed green) and Xu et al. (2005) (Solid red).
The large-dashed blue line denotes the errors solely from pseu-
doacoustic approximation with the correct averaging formulas.
The azimuthal error shown remains constant for all offsets and
can be multiplied with r4 for the total error.
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Travel Time Inversion within Orthorhombic Media
Ed Wright∗, Shell, Peter Bakker, Shell and Xiaoxiang Wang, Shell

SUMMARY

With wide-azimuth and full-azimuth surveys becoming
more common within the industry, so too is it becom-
ing more common to observe residual moveout (RMO)
that is dependent on the azimuthal angle. This abstract
demonstrates how orthorhombic parameters can be to-
mographically inverted for from RMO that exhibits az-
imuthal dependency. The method uses a two-step ap-
proach, where the azimuthal direction of anisotropy is
first realized, and then subsequent orthorhombic param-
eters can be inverted for. The method has been tested
on simple synthetic examples, and real data examples
(not shown in this abstract).

INTRODUCTION

An orthorhombic medium is described by having three
mutually orthogonal planes of mirror symmetry. Figure
1 shows an example of an orthorhombic medium, where
the planes of symmetry are caused by parallel vertical
cracks embedded in a medium composed of thin hori-
zontal layers. The phase velocity of a propagating wave
within an orthorhombic medium depends on 12 indepen-
dent parameters, where 9 of these parameters define the
stiffness of the medium, and the remaining 3 define the
orientation of the symmetry planes. An orthorhombic
medium has a lower form of symmetry than a trans-
versely isotropic medium.

There are a few examples in the literature where or-
thorhombic velocity model building has been performed.
Early development into orthorhombic model building
has been done by (Birdus et al., 2012). (He et al., 2013)
performed orthorhombic model building in the Gulf of
Mexico and (Li et al., 2012) performed velocity model
building using full azimuth data for tilted orthorhombic
depth imaging, also, in the Gulf of Mexico.

More recently (Kainkaryam et al., 2016) performed or-
thorhombic model building which included an inversion
for the orientation of the prinicpal axes of azimuthal
anisotropy. This was done by determining the major
axis of the elliptical variation in δ.

In this abstract we present a two step method to per-
forming orthorhombic model building. The first step
uses an elliptical approximation of the phase velocity,
given by equation 1, to determine the orientation of the
principal axes of azimuthally dependent anisotropy. The
second step freezes this orientation, and then performs
another inversion for the remaining orthorhombic pa-
rameters. A simple synthetic example demonstrates this
approach.

THEORY

An approximate form of the eikonal equation for an
orthorhombic medium has been derived using a non-
tilted weak approximation, similar to (Tsvankin, 1997),
(Pšenč̀ık and Farra, 2005), (Farra, 2001), (Farra and
Pšenč̀ık, 2003), given by the equation,

1 = V 2
P0

ˆ
‖~p‖2 + (ε1 + ε2)A+ (ε1 − ε2)B

˜
− V 2

P0

‖~p‖2

»
(η1 + η2)Ap2

z + (η1 − η2)Bp2
z +

1

2
η3C

–
, (1)

where, A = p2
x +p2

y, B = (p2
y−p2

x) cos 2χ+ 2pxpy sin 2χ,
and C = (sin 2χ(p2

x − p2
y) + 2pxpy cos 2χ)2. Here, VP0,

is the velocity along the vertical x3 axis in figure 1, an-
gle χ describes the orientation of the principal axes of
symmetry in the horizontal plane, p̂ = (px, py, pz) de-
fines the slowness vector, ε1 and ε2 are Thomsen’s trans-
verse isotropy (TI) parameters (Thomsen, 1986) in the
[x2, x3], [x1, x3], planes respectively (Tsvankin, 1997),
and η1, η2 and η3 are Alkhalifah’s anellipticity param-
eters (Alkhalifah and Tsvankin, 1995) in the [x2, x3],
[x1, x3], and [x1, x2] planes respectively.

To determine the direction of azimuthal anisotropy, we
perform a travel time inversion using an elliptic approx-
imation of equation 1, (η1 = 0,η2 = 0,η3 = 0), which
determines the angle χ at which the stiffness tensor is
rotated in the horizontal plane towards the principal
axes of azimuthal anisotropy, and the strength of the
azimuthal anisotropy. By fixing χ, another inversion
is run using equation 1 to determine the remaining or-
thorhombic parameters. Note that tilt angles can be
applied to model tilted orthorhombic media, but the to-
mography is restricted to the angle χ.

SYNTHETIC EXAMPLE

Synthetic data is generated by anisotropic raytracing
to six horizontal reflectors from a 65 by 65 square grid
of shots and receivers. The raytracing is through a
constant velocity of VP0 = 3500ms−1 that contains an
orthorhombic ellipsoidal anomaly, where ε1 = 0.228,
ε2 = 0.076, δ1 = 0.02, δ2 = −0.02, δ3 = 0.02662, γ1 = 0,
γ2 = 0 and χ = 30o. Figure 2 (a) displays the velocity
model with respect to δD = 0.5(δ2 − δ1). The anomaly
has been removed in the start model.

The travel time inversion (TTI) input consists of dou-
ble parabolic picks from offset vector tiles generated
by pre-stack Kirchoff depth migration. The parame-
ters inverted for are χ, VP0, δ1, δ2, δ3, ε1 and ε2. δ =
0.5(δ1 + δ2) = 0 is a constraint in the inversion. The in-
version is restricted to a box around where the anomaly
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(a)

Figure 1: An orthorhombic model caused by parallel
vertical cracks embedded in a medium composed of thin
horizontal layers. Orthorhombic media have three mu-
tually orthogonal planes of mirror symmetry Tsvankin
(1997).

is located in the true model. The final update is ob-
tained after 4 iterations of migration, picking and inver-
sion.

The results in figure 2 show vertical cross-sections com-
paring the true (a) and final (b) profiles for δD, where
the shape of the anomaly has been recovered. Figure 2
(c) and (d) compare depth slices showing how the inver-
sion has recovered the principal direction and strength of
the azimuthal anisotropy. This has been parameterised
by α = 0.5(ε1 − ε2 + δ1 − δ2), where the orientation of
the line segments from the x1 axis illustrate the χ pa-
rameter. The value of α is recovered to around 80%
accuracy.

In figure 2 (e) and (f) (cross-section) selections of offset
vector tiles for the three deeper horizons are compared
between the start model and the final model after mi-
gration. A significant reduction in the RMO is observed.

DISCUSSION

Performing an orthorhombic velocity inversion is a chal-
lenging task due to the size of the inversion parameter
space. The two-step method presented here has split
the problem into first determining the principal axes of
azimuthal anisotropy, and then inverting for the remain-
ing orthorhombic parameters. In the synthetic example
shown, the principal strength and direction of the az-
imuthal anisotropy has been recovered to around 80%
accuracy. A significant reduction of RMO is seen when
comparing gathers generated from the start and final
model, showing the validity of our approach.
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(a)

Figure 2: (a) Vertical cross-section of δD = 0.5(δ2 − δ1)
in the true model, showing the orthorhombic anomaly.
Also shown are the six horizonal reflectors. (b) Same
vertical cross-section of δD from the final velocity
model. (c) Depth cross-section of the principal di-
rection (orientation of the line segments with the x1

axis) and strength (length of line segment) of azimuthal
anisotropy, where α = (ε1 − ε2 + δ1 − δ2)/2. (d) Same
depth cross-section for the final model. (e) Cross-section
selection of offset vector tiles for three reflectors after a
migration of the start model. The green squares are
(cross-sections) of the double parabolic picks. (f) Same
cross-section selection of offset vector tiles for the final
model.
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1 Introduction

We present an approximate P-wave moveout formula for weakly or moderately anisotropic media of
arbitrary symmetry. Instead of common expansion of the square of reflection traveltime in terms of
the square of the source-receiver offset, we expand the square of reflection traveltime in terms of weak-
anisotropy (WA) parameters. We specify the formula for the TTI media, transversely isotropic media
with arbitrarily tilted axis of symmetry, and test and discuss its accuracy.

2 Moveout formula

We consider the source-receiver profile oriented along the x1 axis of the Cartesian coordinate system xi.
The approximate nonhyperbolic moveout formula for anisotropic media of arbitrary symmetry has then
the following form:

T 2(x̄) = T 2
0

(1 + x̄2)3

P (x̄)
. (1)

Here, T denotes the traveltime of the unconverted reflected P wave, x̄ is the normalized offset x̄ = x/2H,
where x is the source-receiver offset and H is the depth of the reflector. The symbol T0 denotes the
two-way zero-offset traveltime in a reference isotropic medium whose P-wave velocity is α, T0 = 2H/α. It
generally represents an approximation of the actual zero-offset traveltime. Finally, the polynomial P (x̄)
in equation (1) is given by the expression

P (x̄) = (1 + x̄2)2 + 2ϵxx̄
4 + 2δyx̄

2 + 2ϵz , (2)

in which ϵx, ϵz and δy are the WA parameters defined as

ϵx =
A11 − α2

2α2
, ϵz =

A33 − α2

2α2
, δy =

A13 + 2A55 − α2

α2
. (3)

The parameters Aαβ are the density-normalized elastic moduli in the Voigt notation.
Equation (1) is formally identical to the moveout formula for anisotropic media of higher symmetry

up-to monoclinic, underlaid by horizontal reflectors coinciding with one of the symmetry planes (Farra,
Pšenč́ık and J́ılek, 2016). In contrast to it, equation (1) is related to a reference ray, which generally
differs from the actual ray. The reference ray is symmetric with respect to the normal to the reflector
and situated in the plane (x1, x3); its reflection point generally differs from the reflection point of the
actual ray. Equation (1) is independent of the reference velocity α.

In the following, we use the above moveout formula for TTI media. We specify the axis of symmetry
of a TTI medium by the unit vector t:

t ≡ (t1, t2, t3) ≡ (cosφ sin θ, sinφ sin θ, cos θ) , (4)

where φ and θ are the azimuth and polar angles, respectively. In the local Cartesian coordinate system
xTI
i with xTI

3 axis parallel to the vector t, P-wave propagation is controlled by three local P-wave TI WA
parameters ϵTI

x , ϵTI
z and δTI

y defined as in (3), but with ATI
αβ instead of Aαβ . WA parameters ϵx, ϵz and

δy given in equation (3) are related to WA parameters ϵTI
x , ϵTI

z and δTI
y through the following equations:

ϵx = ϵTI
x (t22 + t23)

2 + ϵTI
z t41 + δTI

y t21(t
2
2 + t23) , ϵz = ϵTI

x (t21 + t22)
2 + ϵTI

z t43 + δTI
y t23(t

2
1 + t22) ,

δy = 2ϵTI
x (3t21t

2
3 + t22) + 6ϵTI

z t21t
2
3 + δTI

y [(t22 + t23)t
2
3 + t21(t

2
1 + t22)− 4t21t

2
3] . (5)
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3 Tests of accuracy

Figure 1 shows the relative traveltime errors of the moveout formula (1) for several orientations of the
axis of symmetry of the Greenhorn shale (Fomel, 2004) model (anisotropy ∼ 26%). As an exact reference,
traveltimes obtained from the program package ANRAY are used. The maximum errors are about 2.5%.
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Figure 1: TTI Greenhorn shale model. Variation of relative traveltime errors with x̄ = x/(2H) for the
axis of symmetry with azimuths φ = 0o (left), φ = 45o (middle) and φ = 90o (right). Polar angles θ
made by the axis of symmetry with the vertical x3-axis are θ = 0o, 30o, 60o and 90o in each frame.

4 Conclusions

The approximate P-wave moveout formula (1) for anisotropic media of arbitrary symmetry represents an
alternative to commonly used formulae based on the Taylor expansion of traveltime. Specified for the
TTI case, it depends on two angles determining the orientation of the axis of symmetry and 3 P-wave
WA parameters ϵTI

x , ϵTI
z and δTI

y .
As in previous studies, the accuracy of the formulae depends strongly on deviations of ray- and phase-

velocity directions. Maximum relative traveltime errors are about 2.5% for anisotropy whose strength is
about 26%.

The specification of the moveout formula (1) by only WA parameters ϵx, ϵz and δy (describing the VTI
symmetry) agrees with the observation of Rasolofosaon (2003) that the use of the TI parameterization
can be extended to moderate anisotropy of any symmetry.

For higher-symmetry anisotropic media overlaying a reflector, which coincides with one of their sym-
metry planes, equation (1) reduces to the formula derived recently by Farra et al. (2016) for HTI, VTI,
orthorhombic or monoclinic media.

The procedure, used above for TTI media, can be used for tilted orthorhombic or monoclinic media.
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Oriented inversion of non-hyperbolic moveout attributes in VTI media 
M. Javad Khoshnavaz and Andrej Bóna*; Curtin University, Perth, Western Australia

Summary 

Accurate seismic imaging requires an accurate velocity 

model. Construction of velocity model from seismic data is 

generally time-consuming and labor-intensive. Taking 

anisotropy into account, where more than a single parameter 

is required for searching velocities through non-hyperbolic 

moveout approximation, the velocity model building process 

would be even more time-consuming. Oriented approach is 

an alternative to the routine time-domain imaging/inversion 

algorithms (e.g., semblance analysis). The term oriented 

refers to velocity-less or velocity-independent techniques 

based on the local slopes, which carry sufficient information 

about the reflection geometry and the traveltime moveout of 

the subsurface layering/structures. We use a curvature-

independent oriented approach for the inversion of non-

hyperbolic moveout attributes using several non-hyperbolic 

approximations of traveltimes in horizontally layered 

vertical-transverse-isotropy (VTI) media. In the approach, 

the second derivative of two-way-traveltime with respect to 

offset (curvature) is removed from the previously proposed 

oriented approaches. The need for the curvature estimation 

is replaced by estimation of the zero-offset two-way-

traveltime using predictive painting technique. The accuracy 

of the estimated moveout attributes using the curvature-

independent approach for shifted hyperbola, rational, three-

parameter and acceleration approximations is studied and 

compared on a synthetic VTI CMP gather. 

Introduction 

Most of the routine seismic imaging algorithms require a 

seismic velocity model. Velocity analysis from seismic data 

in time domain (e.g., semblance analysis and constant 

velocity stacks) is a popular way for velocity model 

building; however, it is generally labour-intensive and time-

consuming (Yilmaz, 2001). It needs experienced processors 

to pick the proper velocities from the velocity spectrum. The 

velocity model building using the routine techniques (e.g., 

semblance analysis) becomes more complicated and time-

consuming by taking non-hyperbolic traveltime moveouts 

into account, where more than a single parameter is required 

for the moveout approximations (Alkhalifah and Tsvankin, 

1995). 

Oriented time-domain imaging/inversion using local slopes 

is an alternative to the conventional imaging algorithms. 

Local slopes express the apparent ray parameters in a 

seismic record. They carry sufficient information about the 

reflection geometry and the traveltime moveout of the 

subsurface layering/structures (Fomel, 2007). A lot of 

research has been done in the area of the oriented time-

domain imaging over the last 80 years. Rieber (1936) and 

Riabinkin (1957) were the first who used local slopes in 

prestack seismic domain. Ottolini (1983) formulated the 

migration velocity for each point of the registered seismic 

data to perform it on his oriented migration algorithm for 

horizontal interfaces. This idea was generalized by Fomel 

(2007) by proposing several time-domain imaging operators 

in prestack domain. Cooke et al. (2009) further developed an 

oriented prestack time migration workflow. They used the 

oriented migration velocities to separate/ remove multiples 

form the primaries. These algorithms were developed for 

isotropic media. 

Fowler et al. (2008) used local slopes for the estimation of 

interval velocities for anisotropic media with polar 

anisotropy (VTI). Oriented time-domain imaging was 

extended to 3D elliptically anisotropic media by Burnett and 

Fomel (2009a, 2009b). Casasanta and Fomel (2011) 

proposed another oriented time-domain imaging/inversion 

technique for VTI media in the slant-stack (τ-p) domain. 

Stovas and Fomel (2015) used local slopes and curvatures to 

estimate the non-hyperbolic moveout attributes in VTI 

media for several non-hyperbolic approximations, including 

shifted hyperbola approximation (Malovichko, 1978; de 

Bazelaire, 1988; Castle, 1994), rational approximation 

(Alkhalifah and Tsvankin, 1995) and generalized moveout 

approximation (Fomel and Stovas, 2010). Khoshnavaz et al. 

(2016), proposed a curvature-independent approach for the 

estimation of non-hyperbolic attributes in VTI media. In 

their approach, the attributes are in terms of local slopes and 

zero-offset two-way-traveltimes (TWTT) for different non-

hyperbolic approximations, including shifted-hyperbola 

(Malovichko, 1978; de Bazelaire, 1988; Castle, 1994), 

rational (Alkhalifah and Tsvankin, 1995), three-parameter 

(Blias, 2009), and acceleration approximations (Taner et al., 

2005). They took advantage of predictive painting algorithm 

(Fomel, 2010) for the estimation of the zero-offset TWTT. 

Use of predictive painting kept all moveout attributes 

curvature independent. 

Herein, we applied the oriented technique by Khoshnavaz et 

al. (2016) on a synthetic multilayered VTI CMP gather. We 

compared the accuracy of the estimated attributes using their 

proposed approach for several non-hyperbolic moveout 

approximations, including shifted-hyperbola, rational, three-

parameter, and acceleration approximation. It is shown that 

NMO velocity is more accurate than non-hyperbolic 

attribute (𝜂), regardless of the approximation type. We found 

that the rational approximation has the highest accuracy 

while acceleration approximation has the lowest, among the 

other approximations presented here. We used Madagascar 

Open-Source package (Fomel et al., 2013) for the estimation 
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of local event slopes using plane-wave destructors (Fomel, 

2002) and for the estimation of zero-offset TWTT using 

predictive painting (Fomel, 2010). 

 

Theory 

 

The proposed approach by Khoshnavaz et al. (2016), is 

based on differentiation of TWTT (t) with respect to offset 

form the non-hyperbolic moveout approximations. It gives 

an oriented moveout equation in terms of local slopes (p). 

The original and oriented equations construct a system of 

equations with two unknown variables, NMO velocity and 

anellipticity parameter (η). Solution of the system gives the 

NMO velocity and the anisotropic parameter in terms of 

zero-offset TWTT (t0) and the local slopes. Shifted-

hyperbola, rational, three-parameter, and acceleration 

approximations are given by equations 1, 2, 3 and 4, 

respectively (Golikov and Stovas, 2012). The non-

hyperbolic moveout attributes for the above approximations 

using the oriented approach are listed in Table 1. 

𝑡 ≅ 𝑡0 (1 −
1

8𝜂+1
) +

1

8𝜂+1
√𝑡0

2 +
𝑥2(8𝜂+1)

𝑣2 ,                        (1) 

𝑡2 ≅ 𝑡0
2 +

𝑥2

𝑣2 −
2𝜂𝑥4

𝑣4𝑡0
2[1+(1+2𝜂)

𝑥2

𝑣2𝑡0
2]

,                                   (2) 

𝑡2 ≅
𝑡0

2

2
+

𝑥2

𝑣2 +
1

2
√𝑡0

2 −
8𝜂𝑥4

𝑣4 ,                                           (3) 

𝑡2 ≅ 𝑡0
2 +

𝑥2

𝑣2(1+
2𝜂𝑥2

𝑣2𝑡0
2)

.                                                        (4) 

Shifted 

hyperbola 

𝜂 = −
𝑡0(𝑥𝑝−2𝑡+2𝑡0)

8(𝑡−𝑡0)(𝑥𝑝−𝑡+𝑡0)
−

1

8
                    (5) 

𝑣2 =
𝑥(𝑥𝑝−𝑡+𝑡0)

𝑡0𝑝(𝑡−𝑡0)
                                  (6) 

Rational 

𝜂 =
𝑡0

2(1+𝑅2)(𝑡2−𝑡0
2−𝑝𝑥𝑡)

2𝑅2(𝑡2−𝑡0
2)

2                    (7) 

𝑣2 =
𝑅𝑥2

𝑡0
2                                                  (8) 

𝑅 =
𝑝𝑥𝑡𝑡0

2

2(𝑡2−𝑡0
2)

2 +

𝑡0√(𝑝𝑥𝑡𝑡0)2−4(𝑡2−𝑡0
2)

2
(𝑡2−𝑡0

2−𝑝𝑥𝑡)

2(𝑡2−𝑡0
2)

2         (9) 

Three-

parameter 

𝜂 =
−(2𝑡𝑝𝑥𝑐−1)(2𝑏𝑐−𝑥2)

2𝑥2                          (10) 

𝑣2 = 2𝑥2𝑐                                            (11) 

𝑏 = 𝑡2 −
𝑡0

2

2
                                           (12) 

𝑐 =
2(𝑝𝑡𝑥−𝑡2)+𝑡0

2

4(𝑝𝑡𝑏𝑥−𝑡4+𝑡2𝑡0
2)

                              (13) 

Acceleration 

𝜂 = −
1

2
 
𝑡0

2(𝑝𝑡𝑥+𝑡0
2−𝑡2)

(𝑡0
2−𝑡2)

2                           (14) 

𝑣2 =
𝑝𝑡𝑥3

(𝑡0
2−𝑡2)

2                                     (15) 

Table 1. Oriented moveout attributes.  

Synthetic data example 

 

The oriented inversion technique is applied to a synthetic 

CMP gather from a horizontally layered model including 12 

VTI layers (Figure 1). 

 

 
Figure 1. Generated a) isotropic and b) anisotropic CMP 

gather c) the amplitude difference between the isotropic and 

anisotropic CMP gathers, d) local slopes, e) zero-offset 

TWTTs, and f) flattened data. 
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NMO-velocities increase linearly with time with the range 

of 1800-2300 m/s and the effective anellipticity parameter 

(𝜂) varies between 0.04-0.16. Figures 1a-1c illustrate the 

isotropic CMP gather, anisotropic CMP gather and the 

difference between them, respectively. The traveltimes used 

for modeling, were computed from the effective VTI ray 

velocities corresponding to the given 𝜂s following a similar 

approach explained in Bóna et al. (2008).  Figures 1d-1e 

show the local slopes and zero-offset TWTTs estimated by 

plane-wave destructor (Fomel, 2002) and by predictive 

painting (Fomel, 2010) in Madagascar Open-Source multi-

dimensional data analysis package (Fomel et al., 2013), 

respectively. Figure 1f illustrates the of flattened anisotropic 

CMP gather by the implementation of the predictive painting 

technique. It is observed that the anisotropic data is well 

flattened. To quantify the precision of the estimated TWTTs, 

including the zero-offset TWTTs, the exact TWTT curve at 

interface 5 obtained by forward modeling is compared with 

its corresponding predicted TWTT in Figure 3. Predicted 

TWTT curve is estimated using the fact that TWTTs with 

the same zero-offset TWTT belong to the same waveform. 

The procedure of predicting TWTT curves from the 

predicted zero-offset TWTTs is known as time-warping 

(Burnett and Fomel, 2009b). The standard error around the 

exact curve is less than 0.1% in this example.    

 

 

Figure 2. Comparison between the true traveltime curve and 

the predicted traveltime curve for interface 5 expressed 

Figure 1b. 

 

The estimated local slopes and zero-offset TWTTs are 

employed to compute the anisotropy anellipticity coefficient 

(𝜂) and NMO velocity from the presented approximations. 

Figures 3a-3d illustrate the corresponding estimated spectra 

for 𝜂  from shifted hyperbola approximation (equation 5), 

rational approximation (equation 7), three-parameter 

approximation (equation 10) and acceleration approximation 

(equations 14), respectively. The yellow dots indicate the 

exact effective 𝜂s used for forward modeling. Figures 4a-4d 

show the corresponding estimated spectra for NMO velocity 

from shifted hyperbola approximation (equation 6), rational 

approximation (equation 8), three-parameter approximation 

(equation 11) and acceleration approximation (15), 

respectively. The red dots indicate the exact NMO velocities 

used for forward modeling. It is worth mentioning that due 

to the numerical errors resulting from small local slopes at 

small offsets (close to zero), we filter out the small-offset 

estimates.  

 

 
Figure 3. Estimated 𝜂 from a) shifted hyperbola, b) rational, 

c) three-parameter and d) acceleration approximations using 

the oriented approach. 

 

To have a better comparison between the accuracy of 

estimated moveout attributes from the approximations, we 

picked the maximus for the main time horizons in each 

spectrum and compared them with the exact values. Figures 

5a and 5b show the comparison of effective 𝜂s and effective 

NMO velocities obtained by the application of different 

approximations. It is observed that implementation of all 

approximations result in underestimated 𝜂 and over-

estimated NMO velocity. Rational approximation has the 

highest precision while the acceleration approximation has 
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the lowest. The error in estimated effective 𝜂 increases with 

time, whereas the error in NMO velocity decreases with time 

for all approximations. The obtained results confirm the 

comparable accuracy of acceleration and three-parameter 

approximation, as pointed out by Golikov and Stovas (2012). 

 

 
Figure 4. Estimated 𝜂 from a) shifted hyperbola, b) rational, 

c) three-parameter and d) acceleration approximations using 

the oriented approach. 

 

 

Conclusions 

 

We studied an oriented approach for the inversion of non-

hyperbolic attributes in VTI media. The approach is the 

further improved version of the previous oriented inversion 

algorithms. The only initial requirements of the studied 

approach are local slopes in each point within a CMP gather 

and the corresponding zero-offset TWTT. The main 

advantages of the oriented approach are its time-efficiency 

and curvature independence. The need for the estimation of 

curvature was replaced by the use of predictive painting 

technique to estimate the zero-offset TWTT. Comparison 

between the inverted moveout attributes obtained by the 

application of the oriented approach on a numerical 

transversely isotropic CMP gather from shifted-hyperbola 

approximation, rational approximation, three-parameter 

approximation, and acceleration approximation showed that 

the rational approximation has the highest accuracy while 

the acceleration approximation has the lowest accuracy for 

both 𝜂s and NMO velocities. It was also demonstrated that 

the precision in the inversion of NMO velocities is higher 

than the precision in the inversion of 𝜂s, regardless of 

approximation type. The road ahead is to extend the oriented 

approach to other approximations and to estimate the 

interval parameters from the effective estimated parameters.    
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Figure 5. Comparison of a) 𝜂 and b) NMO velocity for the 

main interfaces estimated from different approximations by 

the implementation of the oriented technique to the 

anisotropic CMP gather shown in Figure 1b.
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Feasibility of waveform inversion in acoustic orthorhombic media
Hui Wang1 and Ilya Tsvankin, Colorado School of Mines

SUMMARY

3D waveform inversion (WI) for anisotropic media is highly
challenging due to its computational cost, large model space,
and trade-offs between the model parameters. Here, we ex-
plore the feasibility of 3D waveform inversion for orthorhom-
bic media in the acoustic approximation. A separable form
of the wave equation is implemented using the pseudospec-
tral method. The pseudospectral extrapolator is stable and
produces kinematically accurate pure-mode P-wavefields with
an acceptable computational cost. To build the initial long-
wavelengthmodel forwaveform inversion, we use the envelope-
based misfit functional, which alleviates the reliance of WI on
low-frequency data. The WI gradients are derived for both
the conventional data-difference and the envelope-based objec-
tive functions. Testing on a modified SEG/EAGE overthrust
model illustrates the performance of the developed wavefield-
extrapolation and gradient-computation algorithms for realistic
orthorhombic media.

WAVEFIELD SIMULATOR

Pure-modemixed-domainwavefield extrapolators satisfy a gen-
eral equation of the form

∂ttu(k, t) +Φ(x, k) u(k, t) = 0 , (1)

where u(k, t) denotes the scalar wavefield variable in the time-
wavenumber domain, k is the wave vector, ∂tt is the second
time-derivative operator, and Φ(x, k) is a linear operator de-
fined in the mixed (spatial and wavenumber) domain. For
acoustic orthorhombic medium with the symmetry planes that
coincide with the Cartesian coordinate planes, the separable
mixed-domain operator can be derived through a Taylor series
expansion (Fowler and Lapilli, 2012):

Φ(x, k) =
3∑
i=1

(
V2
Pi k2

i −
V2
P1V2

P2V2
P3/V

2
Pi − V4

pai

V2
r

k2
1 k2

2 k2
3

k2
i k2

)
,

(2)
whereVr is a reference velocity,VPi (i = 1, 2, 3) are the P-wave
velocities in the coordinate directions, and

V2
pa1 = Vnmo1 VP3,

V2
pa2 = Vnmo2 VP3,

V2
pa3 = Vnmo3 VP1;

(3)

Vnmoi (i = 1, 2, 3) are the P-wave NMO velocities. The veloci-
tiesVnmo1 andVnmo2 aremeasured in the x1- and x2- directions,
respectively, above a horizontal orthorhombic layer. They can
be expressed in Tsvankin’s (1997) notation as follows:

Vnmo1 ≡ V (2)
nmo = VP0

√
1 + 2δ(2) , (4)

Vnmo2 ≡ V (1)
nmo = VP0

√
1 + 2δ(1) , (5)

where δ(1) and δ(2) are the anisotropy coefficients in the [x2, x3]-
and [x1, x3]-planes, respectively. The velocityVnmo3 is defined
by Fowler and Lapilli (2012) in a similar fashion:

Vnmo3 ≡ V (3)
nmo = VP1

√
1 + 2δ(3) , (6)

where δ(3) corresponds to the [x1, x2]-plane (Tsvankin, 1997).

We implement the mixed-domain extrapolator using the gen-
eralized pseudospectral method. Substituting equation 2 into
equation 1 and adding an exponentially decaying absorbing
boundary condition yields the time-stepping formula for the
generalized pseudospectral simulator:

u(x, t + ∆t) + e−2α(x)u(x, t − ∆t)

= e−α(x)

{
2u(x, t) − (∆t)2

3∑
i=1

(
V2
PiF

−1
[

k2
i F [u(x, t)]

]

−
V2
P1V2

P2V2
P3/V

2
Pi − V4

pai

V2
r

F−1
[

k2
1 k2

2 k2
3

k2
i k2 F [u(x, t)]

])}
,

(7)
where α(x) is the damping profile.

INVERSION GRADIENTS

To compute the gradients of the objective function using the
adjoint-state method (Plessix, 2006), we consider the `2-norm
data difference and envelope-based misfit functionals:

Jdat =
1
2
∑
i∈Γx

‖di − doi ‖
2 ,

Jenv =
1
2
∑
i∈Γx

∥∥∥e2
i − eo2

i

∥∥∥2
,

(8)

where the subscript i denotes the data coordinate, Γx is an index
set for the data coordinates, di and doi are the modeled and
observed discrete-time data, and ei and eoi are the envelopes
of the modeled and observed discrete data, respectively.

Misfit functionals produce different adjoint-source functions
used for modeling the adjoint variables. For the `2-norm data
difference and envelope-based misfit functionals, the adjoint
source functions are (respectively):

f adat = d − do , (9)

f aenv = 2
{
∆e2 ◦ d −H

(
∆e2 ◦Hd

)}
, (10)

where ∆e2 = e2 − eo2 is the squared envelope difference. The
symbol “◦” denotes the Hadamard (Schur) product and H is
the Hilbert-transform matrix.

Parameterizing the model by V2
P1, V2

P2, V2
P3, V2

nmo1, V2
nmo2,

and V2
nmo3, we compute the gradients for the misfit functionals
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through the adjoint-state formulation:

∂J
∂
(
V2
P1
) = 〈λ,(k2

1 −
V2
P2

V2
r

k2
1 k2

2
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1 k2

2
k2

)
u

〉
, (16)

where λ is the adjoint wavefield variable satisfying the discrete
adjoint equations and 〈·, ·〉 denotes the inner product in the
L2-space (to which the state and adjoint variables belong).

NUMERICAL EXAMPLE

Figure 1: Orthorhombic medium obtained from the
SEG/EAGE overthrust model. The velocities are scaled from
the original P-wave isotropic velocity field.

The algorithm is tested on a modified 3D SEG/EAGE over-
thrust model. The medium parameters are obtained by heuris-
tically scaling the P-wave velocity to ensure that each parameter
varies within a reasonable range (Figure 1). The initial models
for all velocities linearly increase with depth and contain little
structural information (Figure 2). For comparison, we apply
both misfit functionals to compute the WI gradients. The data
are generated for 25 shots (red dots) in Figure 2 at every grid
point on the horizontal surface. Figure 3 displays the gradi-
ents obtained using the data-difference misfit functional. The
gradients have substantial values only in the shallow part of
the model because the initial velocity fields are quite smooth
and most of the modeled energy represents diving waves. The
gradients computed with the data-difference functional contain
higher-wavenumber information, which should generally be
avoided during the early stages of WI. In contrast, the gradients

Figure 2: Initial parameter fields (identical for all six parame-
ters) used to compute theWI gradients for themodel in Figure 1.
The red dots mark the source positions.

produced by the squared envelope misfit functional are more
smooth and have a lower-wavenumber content, which should
help in updating long-wavelength macro models for later itera-
tions of WI.

Figure 3: Gradients computed with the data difference func-
tional: a)V2

P1, b)V2
P2, c)V2

P3, d)V2
nmo1, e)V2

nmo2, and f)V2
nmo3.
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Elastic FWI for VTI media: A synthetic parameterization study
Nishant Kamath, Ilya Tsvankin & Esteban Dı́az
Center for Wave Phenomena, Colorado School of Mines

SUMMARY

A major challenge for multiparameter full-waveform inversion
(FWI) is the inherent trade-offs (or cross-talk) between model
parameters. Here, we perform elastic FWI of multicomponent
data generated for a synthetic VTI (transversely isotropic with
a vertical symmetry axis) model based on a geologic section
of the Valhall field in the North Sea. An oblique displacement
source, which excites intensive SV waves in the conventional
offset range, is needed to take advantage of shear information.
We test three model parameterizations, which exhibit differ-
ent radiation patterns and, therefore, create different parame-
ter trade-offs. The results show that the choice of parameteri-
zation for FWI depends on the availability of long-offset data,
the quality of the initial model for the anisotropy coefficients,
and the parameter that needs to be resolved with the highest
accuracy.

INTRODUCTION

Full-waveform inversion (FWI) can provide a higher-resolution
model of the subsurface (on the order of wavelength) com-
pared to reflection or traveltime tomography. Most elastic FWI
algorithms are developed for isotropic media (Vigh et al., 2014).
When anisotropy is taken into account, inversion is often per-
formed in the acoustic approximation (Gholami et al., 2013;
Alkhalifah and Plessix, 2014).

Kamath and Tsvankin (2016) devise an elastic FWI algorithm
for VTI media and apply it to 2D synthetic transmission data.
To gain insight into the inversion results, they present ana-
lytic expressions for the radiation (sensitivity) patterns of the
VTI parameters. Here, the FWI methodology of Kamath and
Tsvankin (2016) is applied to multicomponent data from a syn-
thetic model based on a geologic section of the Valhall field.

METHODOLOGY

FWI is performed in the time domain by minimizing the least-
squares objective function F defined as the L2-norm of the
difference between the observed data and those computed for a
trial model. The gradient of the objective function with respect
to the stiffness coefficients ci jkl is obtained using the adjoint-
state method (Kamath and Tsvankin, 2016):

∂F

∂ci jkl
=−

∫ T

0

∂ui

∂x j

∂ψk

∂xl
dt , (1)

where T is the trace length, and u and ψ are the forward-
modeled and adjoint wavefields, respectively. The gradient
with respect to a chosen model parameter mn is then found

as:
∂F

∂mn
=
∑
i jkl

∂F

∂ci jkl

∂ci jkl

∂mn
. (2)

A finite-difference algorithm is employed to compute the mul-
ticomponent displacement field using the elastic wave equa-
tion for VTI media. The model is iteratively updated with the
L-BFGS-B technique of Byrd et al. (1995).

Propagation of P- and SV-waves in VTI media is controlled by
four Thomsen parameters: the P- and SV-wave vertical veloci-
ties, VP0 and VS0, and the anisotropy coefficients ε and δ . The
parameterizations employed here include combinations of VP0,
VS0, the P-wave NMO (Vnmo) and horizontal (Vhor) velocities,
and the anisotropy coefficients ε , δ , and η .

INVERSION RESULTS

The synthetic model (Figure 1) used in this paper is fashioned
after the geology of the Valhall field in the North Sea (Munns,
1985). The initial models for all three parameterizations are
computed by smoothing the actual fields of VP0, VS0, Vnmo, and
Vhor. We use 109 displacement sources placed with an incre-
ment of 80 m, and receivers at every grid point; both sources
and receivers are at a depth of 20 m. The source signal is a
Ricker wavelet with a peak frequency of 3.5 Hz. A multiscale
approach is employed to mitigate cycle-skipping; the resolu-
tion of the inverted model, as expected, increases with the ad-
dition of higher frequencies.

The first parameterization, which was successfully used by Ka-
math and Tsvankin (2013) for layer-cake VTI media, includes
the velocities VP0, VS0, Vnmo and Vhor. The P-wave radiation
patterns of VP0 and Vhor (Figure 2(a)) do not significantly over-
lap, and the objective function is most sensitive to these two
velocities. A high-resolution VP0-field (Figure 3(a)) can be ob-
tained even with conventional-offset data if the initial model
does not produce cycle-skipping. To build an accurate low-
wavenumber model of Vhor (Figure 3(a)), it is necessary to use
diving waves.

The objective function for the second parameterization, which
consists of V 2

nmo, V 2
S0, (1+ 2η), and (1+ 2δ ) (after Alkhali-

fah and Plessix, 2014), is more sensitive to the velocity Vnmo
than to the other parameters. Because of the trade-off be-
tween Vnmo and the anisotropy coefficient η at large offsets,
the long-wavelength model of Vnmo cannot be built without
good a priori knowledge of η . The possibility of obtaining a
high-resolution Vnmo-field from data in the conventional offset
range depends on the accuracy of the initial δ -field.

A low-wavenumber model of the horizontal velocity for pa-
rameterization III [V 2

hor, V 2
S0, (1+2η), and (1+2ε)] can be ac-

curately estimated by inverting long-offset data because there
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(a) (b) (c) (d)

Figure 1: Parameters (a) VP0, (b) VS0, (c) ε , and (d) δ of a synthetic VTI model based on sections from the Valhall field. The
velocities have units of km/s.

(a) (b)

Figure 2: (a) P- and (b) SV-wave radiation patterns obtained
with parameterization I for reflections from a horizontal in-
terface. The patterns are computed as functions of the open-
ing angles at the diffractor with the background velocity ratio
VP/VS = 2 (the background is isotropic).

(a) (b)

(c) (d)

Figure 3: Actual (black), initial (magenta), and inverted
(green) velocities for parameterization I: (a) VP0, (b) VS0,
(c) Vnmo, and (d) Vhor. The data were generated by an array
of oblique displacement sources. The profiles are displayed at
location x = 3.5 km.

are no trade-offs between Vhor and other parameters at large
opening angles. Conventional-offset displacement can yield a
high-resolution model of Vhor provided the ε-field is known
with sufficient accuracy.

The results for this synthetic model provide important insights
into the performance of elastic FWI for VTI media and should
help in choosing the most suitable parameterization for differ-
ent inversion scenarios.

ACKNOWLEDGMENTS

This work was supported by the Consortium Project on Seis-
mic Inverse Methods for Complex Structures at CWP and com-
petitive research funding from King Abdullah University of
Science and Technology (KAUST). The reproducible numeri-
cal examples are generated with the Madagascar open-source
software package freely available from http://www.ahay.org.

REFERENCES

Alkhalifah, T., and R. Plessix, 2014, A recipe for practical full-
waveform inversion in anisotropic media: An analytical pa-
rameter resolution study: Geophysics, 79, R91–R101.

Byrd, R. H., P. Lu, J. Nocedal, and C. Zhu, 1995, A lim-
ited memory algorithm for bound constrained optimization:
SIAM Journal on Scientific Computing, 16, 1190–1208.

Gholami, Y., R. Brossier, S. Operto, A. Ribodetti, and J.
Virieux, 2013, Which parameterization is suitable for
acoustic vertical transverse isotropic full waveform inver-
sion? Part 1: Sensitivity and trade-off analysis: Geo-
physics, 78, R81–R105.

Kamath, N., and I. Tsvankin, 2013, Full-waveform inversion
of multicomponent data for horizontally layered VTI me-
dia: Geophysics, 78, WC113–WC121.

——–, 2016, Elastic full-waveform inversion for VTI me-
dia: Methodology and sensitivity analysis: Geophysics, 81,
C53–C68.

Munns, J., 1985, The Valhall field: a geological overview: Ma-
rine and Petroleum Geology, 2, 23–43.

Vigh, D., K. Jiao, D. Watts, and D. Sun, 2014, Elastic
full-waveform inversion application using multicomponent
measurements of seismic data collection: Geophysics, 79,
R63–R77.

17th International Workshop on Seismic Anisotropy

42



Waveform inversion for attenuation estimation in anisotropic media
Tong Bai & Ilya Tsvankin
Center for Wave Phenomena, Colorado School of Mines

SUMMARY

Robust estimation of attenuation coefficients remains a chal-
lenging problem, especially for heterogeneous and anisotropic
models. Here, we apply full-waveform inversion (FWI) for at-
tenuation analysis in 2D VTI (transversely isotropic with a ver-
tical symmetry axis) media. A time-domain finite-difference
algorithm based on the standard linear solid model simulates
nearly constant quality-factor values in a specified frequency
band. We employ the adjoint-state method to derive the gra-
dients of the objective function under the Born approxima-
tion. Four parameters describing the attenuation coefficients
of P- and SV-waves are updated simultaneously with the L-
BFGS technique. The inversion algorithm is tested on ho-
mogeneous VTI models with a Gaussian anomaly in one of
the Thomsen-style attenuation parameters. Accurate knowl-
edge of the velocity field and sufficient aperture of the exper-
iment make it possible to resolve the anomaly, with better es-
timates of its shape and peak magnitude obtained for a lower-
frequency source wavelet.

VISCOELASTIC MODELING IN VTI MEDIA

Wavefields in attenuative media can be simulated in the time
domain by superposing several rheological bodies (Carcione,
1993; Bohlen, 2002). As discussed by Bai and Tsvankin (2016),
anisotropic attenuation can be described by the following re-
laxation function (shown here with only one relaxation mech-
anism):

Ψi jkl(t) =CR
i jkl

(
1+ τi jkl e−t/τσ

)
H(t), (1)

where CR
i jkl = Ψi jkl(t → ∞) is called the “relaxed stiffness,”

which corresponds to the low-frequency limit (ω = 0), τσ de-
notes the stress relaxation time determined by the dominant
frequency, the τi jkl-parameters measure the difference between
the stress and strain relaxation time and quantify the magnitude
of anisotropic attenuation, and H(t) is the Heaviside function.
The relaxation function at zero time yields the “unrelaxed stiff-
ness”:

CU
i jkl ≡Ψi jkl(t = 0) =CR

i jkl(1+ τi jkl). (2)

The stiffness difference ∆Ci jkl =CU
i jkl−CR

i jkl is proportional to
τi jkl and, therefore, reflects the magnitude of attenuation.

The P- and SV-wave attenuation in VTI media can be described
by the Thomsen-style parameters AP0, AS0, εQ , and δQ (Zhu
and Tsvankin, 2006); AP0 ≈ 1/(2Q33) and AS0 ≈ 1/(2Q55)
denote the P- and S-wave attenuation coefficients in the ver-
tical (symmetry-axis) direction. The parameter εQ quantifies
the fractional difference between the horizontal and vertical P-
wave attenuation coefficients, and δQ controls the curvature of
the P-wave attenuation coefficient at the symmetry axis. Com-
bined with the unrelaxed stiffnesses CU

i jkl (used as the refer-
ence elastic parameters), these attenuation parameters can be

converted into the quality-factor elements Qi jkl and then into
∆Ci jkl .

The viscoelastic stress-strain relationship can be expressed as

σi j =CU
i jkl εkl +∆Ci jkl rkl , (3)

where rkl are the memory variables, which satisfy the follow-
ing partial differential equations (Bai and Tsvankin, 2016):

∂ rkl

∂ t
=− 1

τσ
(rkl + εkl) . (4)

Equations 3 and 4 and the momentum conservation law con-
stitute the viscoelastic VTI wave equation. Solving that equa-
tion with finite-differences allows us to carry out time-domain
modeling for media with VTI symmetry for both velocity and
attenuation.

VISCOELASTIC FULL-WAVEFORM INVERSION

FWI utilizes the entire waveforms of certain arrivals (e.g., div-
ing waves and/or reflections) to iteratively update the model
parameters. The degree of data fitting is usually evaluated with
the `2-norm objective function (e.g., Tarantola, 1988; Tromp
et al., 2005):

F(m) =
1
2

N∑
r=1

‖ u(xr, t,m)−d(xr, t) ‖2, (5)

where u(xr, t,m) denotes the data computed for the trial model
m, d(xr, t) is the observed data, r is the receiver index, and t
is the time. Summation over shots is implied. The gradient of
the objective function can be computed with the adjoint-state
method (Tarantola, 1988; Tromp et al., 2005). By applying
the Born approximation, the gradients for the viscoelastic pa-
rameters ∆Ci jkl can be expressed as the cross-correlation of the
memory variables from the forward simulation with the adjoint
strain fields (Tarantola, 1988):

∂ F
∂ ∆C jklm

=−
∑

sources

∫ T

0

∂u†
i

∂x j
rkl dt, (6)

where u† denotes the adjoint displacement field.

FWI algorithms for attenuative media are usually parameter-
ized by coefficients inversely proportional to the quality factor
Q. Here, we invert for the vertical attenuation coefficients AP0,
AS0 and two more parameters of similar magnitude (APh, APn)
dependent on attenuation anisotropy. The P-wave horizontal
attenuation coefficient APh is given by:

APh = AP0 (1+ εQ)≈
1

2Q11
. (7)
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To account for the attenuation-anisotropy coefficient δQ , we
define another attenuation parameter, APn:

APn = AP0 (1+δQ), (8)

which governs the variation of P-wave attenuation near the
symmetry axis and has a form similar to the normal-moveout
(NMO) velocity for a horizontal VTI layer. The gradients for
the stiffness differences ∆Ci jkl (equation 6) can be converted
into those for the attenuation coefficients AP0, AS0, APh and
APn by applying the chain rule.

To reduce the ambiguity of the inverse problem, we assume the
reference velocity parameters (CU

i j ) and density to be known.
This prevents cycle-skipping in the inversion because the in-
fluence of attenuation-induced dispersion in the seismic fre-
quency band is typically small (Zhu and Tsvankin, 2006). Hen-
ce, the FWI algorithm can operate with relatively high frequen-
cies to increase the sensitivity of the wavefield to attenuation.
The L-BFGS method is applied to scale the gradients by an
approximate inverse Hessian matrix.

SYNTHETIC EXAMPLE

The algorithm is tested on VTI models with a Gaussian anomaly
in one of the Thomsen-style parameters (AP0, AS0, εQ , and δQ )
embedded in a homogeneous background. Figure 1 shows a
model with a Gaussian anomaly in the shear-wave attenuation
coefficient AS0. The horizontal source and receiver arrays are
placed above and below the anomaly. The velocity parameters
VP0, VS0, ε , and δ and the density are constant and kept at the
actual values during the inversion. The reference frequency is
set equal to the central frequency of the wavelet. Starting from
the homogeneous background model, we conduct simultane-
ous inversion for the attenuation parameters AP0, AS0, APh, and
APn. To illustrate the influence of frequency on the inversion
results, the test is performed for two wavelets with a different
central frequency (100 Hz and 30 Hz).

Figure 1: The fractional difference between AS0 and its back-
ground value, 0.005 (QS0 = 100); at the center of the anomaly,
AS0 = 0.025 (QS0 = 20). The other parameters are constant:
AP0 = 0.005, εQ = 0.2, δQ = 0.4, VP0 = 4000 m/s, VS0 = 2000
m/s, ε = 0.15, δ = 0.1, ρ = 2.0g/m3. The yellow dots denote
horizontal displacement sources, and the magenta line marks
the receivers placed at each grid point.

When the 100-Hz wavelet is used (Figure 2(a)), the shape of
the anomaly is somewhat distorted and its peak (AS0 = 0.019)
deviates from the actual value (AS0 = 0.025). A more accurate
recovery of the peak magnitude (AS0 = 0.022) and shape of
the anomaly (Figure 2(b)) is achieved with the 30-Hz wavelet.

In both cases, the algorithm produces no updates in the other
three attenuation parameters (AP0, APh, and APn), which indi-
cates the absence of trade-offs in the inversion for AS0. Like-
wise, it is possible to recover the peak magnitude and shape
of an anomaly in εQ (APh), with better results for the low-
frequency (30-Hz) wavelet.

(a) (b)

Figure 2: Fractional differences between the inverted and ini-
tial AS0 for the model with the AS0-anomaly. The inversion is
performed with the (a) 100-Hz wavelet and (b) 30-Hz wavelet.

Reconstruction of an anomaly in the P-wave coefficient AP0
proves to be more problematic. Because the parameters εQ and
δQ are constant, there are anomalies in APh and APn as well.
The inversion using a 100-Hz wavelet accurately recovers AP0,
whereas APh and APn are barely updated. Analysis of the ob-
jective function shows that the difficulty in estimating APh and
APn is due to the trade-off between these two coefficients. Re-
ducing the central frequency of the wavelet to 30 Hz improves
the inversion results for APh and APn, although the peak values
of the anomalies are underestimated.

The algorithm is also applied to a more structurally compli-
cated medium based on a section of the modified BP TI model.
These results will be discussed in the workshop presentation.
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Anisotropic waveform inversion for microseismic velocity analysis and event location
Oscar Jarillo Michel* and Ilya Tsvankin, Center for Wave Phenomena, Colorado School of Mines

SUMMARY

Waveform inversion (WI) is extensively used in reflection seis-
mology and could provide improved velocity models and event
locations for microseismic surveys. Here, we develop an elas-
tic WI algorithm for anisotropic media designed to estimate the
2D velocity field along with the source parameters (location,
origin time, and moment tensor). The gradient of the objec-
tive function is obtained with the adjoint-state method, which
requires just two modeling simulations at each iteration. The
current implementation is developed for P- and SV-waves in
VTI (transversely isotropic with a vertical symmetry axis me-
dia). Synthetic testing for a vertical receiver array shows that
WI can accurately recover all four relevant interval VTI pa-
rameters from the horizontal and vertical displacement compo-
nents, if the initial model is sufficiently accurate and the source
parameters are fixed at the correct values.

INTRODUCTION

For microseismic studies, velocity models can be built simulta-
neously with event location using anisotropic traveltime inver-
sion (Grechka and Yaskevich, 2014). However, WI can poten-
tially improve the resolution of velocity analysis and accuracy
of event location because it operates with entire waveforms
and could include multiples, scattered waves, etc. in addition
to the direct arrivals.

In a previous publication (Jarillo Michel and Tsvankin, 2014),
we employ the adjoint-state method to compute the gradient
of the WI objective function with respect to the microseismic
source location xs, origin time t0, and moment tensor M. Jar-
illo Michel and Tsvankin (2015) iteratively minimize the WI
objective function and estimate the source parameters from
2D multicomponent microseismic data, with the VTI velocity
model assumed to be known. Here, we extend this methodol-
ogy to velocity analysis of microseismic data and apply it to
estimation of the interval parameters of horizontally layered
VTI media.

WAVEFORM-INVERSION METHODOLOGY

The algorithm operates with the elastic wave equation for a
point source in a heterogeneous anisotropic medium:

ρ
∂2ui

∂t2
− ∂

∂xj

(
cijkl

∂uk

∂xl

)
= −Mij

∂[δ(x− xs)]

∂xj
S(t) ,

(1)
where u(x, t) is the displacement field, t is time, cijkl is the
stiffness tensor (i, j, k, l = 1, 2, 3), ρ (x) is density, M, xs,
and S(t) are the source moment tensor, location, and time
function, respectively, and δ(x− xs) is the spatial δ-function;

summation over repeated indices is implied. The finite-differe-
nce code sfewefdm in MADAGASCAR is used to solve equa-
tion 1 for 2D heterogeneous VTI media.

The data residuals are measured by the `2-norm objective func-
tion F commonly used in WI:

F(m) =
1

2

N∑
n=1

‖dpre(m,xrn )− dobs(x
rn )‖2 , (2)

where dobs is the observed displacement and dpre(m) is the
displacement simulated for the trial model m. The wavefield
excited by each microseismic event is recorded byN receivers
positioned at xrn (n = 1, 2, ..., N ); the function F also in-
volves summation over all available sources.

Although the examples shown below are for 2D models, in
principle this methodology is applicable to 3D data from layer-
cake VTI media. Indeed, if the source-receiver azimuth can be
estimated from the polarization of the direct P-wave, the in-
plane horizontal displacement component employed in our al-
gorithm can be computed by a simple receiver rotation. Then
the wavefields from sources at different azimuths can be in-
verted simultaneously using the proposed 2D method.

Model updating

The gradient of the objective function F with respect to the
source parameters is discussed in Jarillo Michel and Tsvankin
(2014, 2015). The WI algorithm introduced here is designed
to also recover the anisotropic velocity model. The gradient
of the objective function F with respect to the stiffness coeffi-
cients cijkl can be obtained using the adjoint-state method:

∂F
∂cijkl

= −
∫ T

0

∂ui

∂xj

∂ψk

∂xl
, (3)

where u and ψ are the forward and adjoint displacement fields,
respectively. The derivatives of F with respect to the chosen
model parameters mn can be found from the chain rule:

∂F
∂mn

=
∑
ijkl

∂F
∂cijkl

∂cijkl
∂mn

. (4)

The gradient for the source and velocity parameters can be
computed from the same forward and adjoint wavefields gen-
erated by two finite-difference simulations. In the example be-
low, the source parameters are fixed, which helps avoid param-
eter trade-offs. However, the algorithm is designed to perform
sequential inversion where the source parameters are obtained
first using the initial velocity model. Then the inverted source
parameters are employed to update the velocity model, and the
process continues in iterative fashion. The model is updated
with the l−BFGS method (Byrd et al., 1995).

Signatures of P- and SV-waves in VTI media are described by
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(a) (b)

(c) (d)

Figure 1: Sources (black dots) and receivers (magenta line)
embedded in a layered VTI medium with the parameters (a)
Vhor, (b) VS0, (c) η, and (d) ε (the velocities are in m/s). The
source mechanism is described by the moment-tensor elements
M11 = 0,M33 = 0, andM13 = 1010 N·m (i.e., it is a dip-slip
source with a horizontal fault plane). The central frequency of
the source signal is 20 Hz.

the vertical P- and S-wave velocities (VP0 and VS0) and the
anisotropy coefficients ε and δ. We parameterize the medium
by (Vhor/Vhori)

2, (VS0/VS0i)
2, (1+2η), and (1+2ε), where

Vhor is the P-wave horizontal velocity, η is the anellipticity
parameter, and the subscript i stands for the initial value. The
WI sensitivity analysis by Alkhalifah and Plessix (2014) shows
that this parameterization is optimal for near-horizontal wave
propagation typical for microseismic surveys.

SYNTHETIC EXAMPLE

We apply the algorithm to estimate the interval parameters of
the horizontally layered (1D) VTI model from Figure 1. The
inversion is carried out for a gridded 2D model with a spacing
of 6 m and no smoothness constraints. The initial 1D model
for all parameters is obtained by smoothing the actual fields in
the vertical direction; in addition, Vhor in the middle layer is
perturbed by 10%. The initial model produces no cycle skip-
ping and the source parameters of all 10 microseismic events
in the model are assumed to be known.

The inverted parameters Vhor, VS0, η, and ε are close to the
actual interval values (Figure 2). Indeed, Vhor should be well-
constrained for the predominantly near-horizontal P-wave prop-
agation in this experiment. As discussed by Alkhalifah and
Plessix (2014), there are no trade-offs between Vhor, η, and ε
for relatively large P-wave propagation angles with the sym-
metry axis.

(a) (b)

(c) (d)

Figure 2: Actual (black), initial (magenta), and inverted (blue)
parameters for the model in Figure 1: (a) Vhor, (b) VS0, (c) η,
and (d) ε (the velocities are in m/s). The profiles are plotted at
x1 = 750m.

In contrast, differences in the initial value of ε on the order of
± 0.1 lead to substantial errors in the inversion, which agrees
with the results of Alkhalifah and Plessix (2014) for acoustic
VTI media. Therefore, WI requires an accurate initial model
for ε, which can be obtained from traveltime inversion.
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Anisotropic (VTI) elastic FWI: resolution analysis for walkaway VSP data 
Olga Podgornova*, Scott Leaney, and Lin Liang, Schlumberger 

Multi-parameter inversion 

Multi-parameter full waveform inversion (FWI) of seismic 
data is known to have an issue of the parameters coupling, 
[1]. The origin of the coupling is low sensitivity (including 
none) of the data to certain distributions of medium 
properties, which can only be determined with high 
uncertainty or cannot be determined at all. Here, we 
establish ways of demonstrating that the spatial resolution 
and coupling between the physical parameters (wave 
velocity, density, anisotropy, etc.) are intertwined in case of 
finite frequency data. We analyze the coupling theoretically 
developing further the resolution analysis in the 
wavenumber domain [2], which is an extension of the 
conventional analysis of the radiation patterns, and 
compare theoretical predictions against numerical results 
for walkaway vertical seismic profiling (VSP) acquisition. 

Resolution analysis in the wavenumber domain 

Linearized multi-parameter inversion problem relates 
perturbations in the data d  with perturbations in the 
medium parameters pm  as  

     
3

, , .ps r m p

p R

d L m d   x x x x x (1) 

The integral kernels PmL  depend on the source and 
receivers coordinates sx  and rx , frequency  , source 
wavelet, background parameters of the medium and 
parameterization pm . For a plane-wave far-field 
approximation, homogeneous isotropic background and 
particular type of scattering (e.g. P-P, P-SV etc.), (1) can be 
transformed into the wavenumber domain [2] 

     ˆ, , .
p

AB AB
pm

p

d L m   k k k (2) 

The symbols A  and B  stand for the scattering type, k  is 
the spatial wavenumber and  ˆ pm k  is the medium 
perturbation in the wavenumber domain. The relation 
between k ,   and dip and scattering angles depends on 
the scattering type and takes the following forms: 

0 0 0 0
,  ,  .s r s r

P P P S
etc

v v v v
    

      
   

γ γ γ γ
k k  (3) 

Here 0Pv , 0Sv  are compressional and shear velocities of 
the background medium, sγ  and rγ  are unit directions 
between the imaging point and positions of the source and 
receiver and expressions of P

AB
mL  are given in [2]. Directions 

sγ , rγ  determine a scattering angle (angle between sγ , rγ ) 
and dip angles (correspond to the direction of k ). Due to 
(3) the dependence on   in (2) is equivalent to the
dependence on the scattering angle.

For multi-frequency data, multiple scattering angles 
contribute to the same wavenumber providing different 

P

AB
mL  coefficients and, so, resolve (some) parameters in (2). 

Different types of scattering have different sensitivity and, 
if combined together, they achieve better resolution than 
single type of scattering. Due to the limited illumination of 
the seismic acquisitions, the data lack some scattering 
angles and scattering types. Also, due to the finite 
frequency content of the data, only a subset of the 
scattering angles contribute to a particular wavenumber. 
For example, large scattering angles do not contribute to 
the large wavenumbers. These aspects underlie the spatial 
multi-parameter coupling. 

Assembling all data contributing to the same wavenumber 
from all available scattering angles and scattering types we 
get a linear system 

     ˆ . d k L k m k (4) 

The spatial multi-parameter coupling can be analyzed 
through SVD of the matrix L (or *L L ) in (4). 

Numerical Experiments 

We consider a walkaway VSP acquisition with volumetric 
source (i.e. only P-P and P-SV scattering) for a one-layer 
model in a homogeneous isotropic background with 

0 3000Pv   m/sec, 0 1700Sv  m/sec and density 2   
g/cm3. We vary the depth of the layer, its thickness and its 
medium properties in different numerical experiments. 
Medium is parametrized by normalized density, 
compressional and shear velocities and Thomsen 
anisotropy parameters   and  .  

The first experiment demonstrates a variation of the multi-
parameter resolution with the scattering types. As 
Figures 1A and 1B show, contrasts of 0Sv  are structurally 
recovered up to the distance covered by P-P reflections 
while multi-parameter resolution degrades early with the 
loss of P-SV conversions and reflections. The lack of P-SV 
conversions affects the multi-parameter resolution more 
than the lack of P-SV reflections (compare Figures 1A and 
1B). P-SV reflections and conversions are differentiated by 
the values of the scattering angles.  

The second experiment demonstrates the spatial multi-
parameter coupling at the area close to the receivers which 
is very well illuminated by both scattering angles and 
scattering types. To compare numerical results with the 
theory, we extract a vertical slice from the numerical result 
at a particular horizontal distance away from the well and 
transform it to the vertical wavenumber domain. 
Computing theoretical results, we only account for the 
scattering angles and scattering types that exist at the depth 
of the layer and distance of the slice. Figures 1A and 2B 
confirm the good quantitative agreement between 
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theoretical predictions and numerical results. The exception 
is an area around zero wavenumber, 0k , which requires 
a separate theoretical treatment and is not discussed here. 
Singular values of L (Figure 2C) can be used as an 
estimate of the number of recoverable parameters at a 
particular spatial resolution. Preliminary analysis suggests 

that four parameters can be recovered up to the spatial 
resolution of the converted P-SV waves. Higher spatial 
resolution compromises multi-parameter resolution. 
Sensitivity is also lost at low wavenumbers meaning that a 
good initial model is required. 

  
Figure 1. FWI results for the one-layer model with 40 m thickness 0Sv contrast (25%): positioned at 560 m depth (A) and at 320 m depth (B). 
Only one parameter ( 0Sv ) among five is shown. Coverage of the P-P reflections (blue dotted line) and P-SV reflections and transmissions (red 
dotted lines) are overlaid on the images. We do not plot limitations of the coverage due to the non-zero minimum source offset. Receivers cover 

depths between 160 m and 800 m, offsets of the sources are from 50 m till 970 m, source frequencies are 6Hz-60Hz. Singular values of L for the 
imaging point at 560 m depth depending on the horizontal distance away from the well (C). In (C), we neglect coupling between spatial and 
multi-parameter resolutions and consider only scattering angles and scattering types. 

   
Figure 2. Theoretical (dotted) and numerical (solid) results for the spatial multi-parameter resolution for the horizontal layer perturbation (10%) 
of 10 m thickness. The layer is located at 545 m depth; results are compared at 40 m away from the well. We show results for the perturbation of 

0Sv (A) and 0Pv (B) only; we also skip anisotropy parameters in B to simplify the plot. Acquisition parameters are as above, source frequencies 

are 9Hz-45Hz. Horizontal axis corresponds to the vertical wavenumber normalized by the smallest P-wavelength. Singular values of L  (C). 

Conclusions and discussion 

We compared theoretical and numerical results of the 
spatial multi-parameter coupling in FWI for a walkaway 
VSP acquisition. Confirming a good agreement between 
these two, we consider a further use of the theory as a tool 
for the parameterizations study and/or estimation of the 
coupling in the inversion results. Theory also predicts some 
limits on the spatial resolution of the anisotropy parameters 
being the best near a vicinity of the receivers. Our current 
results do not account for the uncertainty in the source 
wavelet, non-linear and near field effects. 
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Comparison of elastic stiffness and fracture model based approaches to FWI in HTI media
Morten Jakobsen, Department of Earth Science, University of Bergen

Introduction

The full waveform inversion (FWI) problem can generally be
reduced to a sequence of linear inverse problems by using lo-
cal optimization methods (Lee et al., 2010) or direct iterative
inversion methods (Jakobsen and Ursin, 2015). However, each
linearized inversion step is generally ill-posed, in the sense
that some kind of regularization is generally required to find
a stable and unique solution in the presence of model errors
and noise. FWI in acoustic and anisotropic media share many
of the same challenges, but the computational cost will ob-
viously be larger in the anisotropic case than in the corre-
sponding acoustic case. Also, there are often significant prob-
lems with cross-talk between the multiple model parameters
that one needs to reconstruct in the anisotropic case (Lee et
al., 2010). The problem with cross-talk can be potentially re-
duced by a reparameterization of the forward model (Lee et
al., 2010; Kamath and Tsvankin, 2015), for example involving
some kind of anisotropy parameters. However, the fact that
one needs to reconstruct a relatively large number of model pa-
rameters for each grid block within a discretized seismic model
also after a reparameterization involving anisotropy parame-
ters represents a major challenge. If the seismic anisotropy is
assumed to be caused by a single or multiple sets of aligned
fractures then it may be a good idea to perform a FWI di-
rectly for the parameters of the fractures (e.g., fracture density)
that determines all the independent components of the elastic
stiffness tensors (Bansal and Sen, 2010; Pilskog et al., 2015;
Jakobsen and Pilskog, 2016). This is because the number of
unknown model parameters can then be significantly reduced,
cross-talk effects will be significantly reduced and the param-
eters of the fratures represents a link to geological a priori in-
formation and applications within fractured reservoir engineer-
ing.

Born approximation for general anisotropic media

In the scattering-approach to seismic forward modelling in gen-
eral anisotropic media (Jakobsen et al., 2015), one first decom-
poses the elastic stiffness tensor field of the actual medium
into a suitable reference model with elastic stiffness tensor
field C(0)(x) and a corresponding stiffness perturbation field
δC(x);

C(x) = C(0)(x)+δC(x). (1)
The corresponding decomposition of the particle displacement
vector field u(x) can be written as

u(x) = u(0)(x)+δu(x), (2)

where u(0)(x) is the particle displacement vector field in the
reference model with elastic stiffness tensor field C(0)(x) and
δu(x) is the corresponding perturbation associated with δC(x).
The Born approximation for the scattered wavefield δu(x) (Eaton
and Stewart, 1994; Bansal and Sen, 2010) can be written in
symbolic vector notation as (Jakobsen and Hudson, 2003)

δu(x) =−
∫

dx′∇sG(0)(x,x′) : δC(x′) : ∇su(0)(x′) (3)

where G(0)(x,x′) is the elastic Green’s function that gives the
particle displacement at point x′ due to a vector source at point
x′ in the reference model. The reference medium can in prin-
ciple be selected arbitrarily as long as one knows the corre-
sponding Green’s function and the contrast is sufficiently small
(Eaton and Stewart, 1994). The Green’s function G(0)(x,x′)
can be calculated using ray theory if the reference medium is
sufficiently smooth. In general, however, it may be required
to calculate the reference medium Green’s function using a
purely numerical approach (e.g., the finite difference method)
or a volume integral equation method (Jakobsen and Hudson,
2003; Jakobsen et al., 2015).

Elastic stiffness based approach to FW in HTI media

For the special case of HTI media with the symmetry axis
along the x1 direction, one can (in 2D) decompose the elas-
tic stiffness tensor perturbation field δC(x) as

δC(x) = A1δC11(x)+A2δC33(x)
+ A3δC55(x)+A4δC13(x),

where Ar (r = 1, ...,4) are constant 6× 6 matrices where the
elements are either 0, 1 or 2. From equations (3) and (4), it
follows that the scattered wavefield is given by

δu(x) =
4∑

r=1

∫
D

dx′J(0)r (x,x′)δmr(x′), (4)

where

δm1 = δC11, δm2 = δC33, δm3 = δC55, δm4 = δC13,
(5)

and
J(0)r (x,x′) = ∇sG(0)(x,x′) : Ar : u(0)(x′), (6)

represents the kernel of the Frechet functional derivative oper-
ator. After summing over discrete receivers, sources and fre-
quencies and reorganization of the equations, the linear rela-
tion in equation (12) can be written in matrix form as

δd = J(0)1 δm1 +J(0)2 δm2 +J(0)3 δm3 +J(0)4 δm4 (7)

where δd is a Nd × 1 = (3NrNsNk)× 1 matrix containing the
scattered wavefield data that one can observe at the receiver
surface, J(0)r is a Nd ×N matrix of Frechet derivatives; where
Nr, Ns, Nk and N is the number of discrete receivers, sources,
frequencies and grid blocks, respectively. The above equation
can be rewritten exactly as

δd = J(0)δm, (8)

where J(0) =
[

J(0)1 ,J(0)2 ,J(0)3 ,J(0)4

]T
is a Nd × 4N matrix and

δm= [δm1,δm2,δm3,δm4] is a 4N×1 matrix containing the
unknown model parameters (stiffness perturbations). The lin-
earized seismic waveform inversion problem is to determine
the vector with elastic stiffness perturbations from observa-
tions of the scattered wavefield data vector δd.
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Approaches to FWI in anisotropic media

We can use the Tikhonov regularization method to find an ex-
plicit least-squares solution (Jakobsen and Ursin, 2015):

m = m(0)+
[
(J(0))T J(0)+λ

2I4N

]
(J(0))T

(
d−J(0)m(0)

)
(9)

where I4N is the 4N×4N unit matrix and λ is a regularization
parameter. The reference model can be updated after each lin-
earized inversion step using a generalized T-matrix approach
to seismic modelling in anisotropic elastic media (Jakobsen et
al., 2015). At each iteration, we use a combination of the L-
curve method and a cooling scheme to estimate the optimal
regularization parameter λ (see Jakobsen and Ursin, 2015).

Frature model based approach to FWI in HTI media

By using a Gassmann-consistent effective medium theory (Jakob-
sen and Pilskog, 2016), one can write

δC(x) = t(x)ε(x), (10)

where t is the so-called t-matrix and ε(x is the fracture density
field that determines all the four elastic stiffness constants of a
HTI medium (provided that one ones the storage porosity). It
follows that the scattered wavefield is given by

δu(x) =
∫

D
dx′J(0)ε (x,x′)ε(x′), (11)

where

J(0)ε (x,x′) = ∇sG(0)(x,x′) : t(x′) : u(0)(x′), (12)

represents the kernel of the Frechet functional derivative oper-
ator. After summing over discrete receivers, sources and fre-
quencies and reorganization of the above equations, the linear
relation in equation (11) can be written in matrix form as

δd = J(0)ε ε (13)

where δd is a Nd × 1 = 3NrNsNk × 1 matrix containing the
scattered wavefield data that one can observe at the receiver
surface, J(0)ε is a Nd ×N matrix of Frechet derivatives. The
matrix J(0)ε depends on the fracture density from the previous
iteration, suggesting equation (13) is solved iteratively as de-
tailed by Jakobsen and Pilskog (2016).

Numerical expermiments

We now consider the heterogeneous HTI (syncline) model in
Figure 1 (top), consisting of 16 times 16 grid blocks (24 m in
each direction). We assume 4 sources and 16 receivers uni-
formly distributed along a single line at the top of the model.
The central frequency of the source (Ricker) wavelet is 7.5 Hz
and we perform a simultaneous inversion of frequency domain
data corresponding to 3, 6, 9, 12, 15 and 18 Hz. We add 1
percent random white Gaussien noise to the seismic waveform
data to make the numerical experiment. Figure 1 middle and
bottom shows the inverted stiffness models obtained using the
elastic stiffness and fracture model based approaches to FWI
in HTI media. Clearly, one can see that the inverted model ob-
tained using the fracture model based approach is much closer
to the true model than the inverted model obtained using the
elastic stiffness based approach.
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Figure 1: Comparison of the true stiffness model (top) with the
elastic stiffness (middle) and fracture model (bottom) based
approaches to FWI in (2D) HTI media.

Conclusion

The results of our numerical experiments suggest that the frac-
ture model based approach to FWI in anisotropic media is su-
periour to the conventional stiffness based approach, but there
is uncertainty associated with the underlying fracture model.
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Summary 
Anisotropic attenuation affects seismic observations and 
complicates their interpretations. Its accurate determination 
is, however, difficult and needs extensive measurements of 
wavefields in many directions. So far, the travel time and 
amplitude decay of waves are usually measured along a 
sparse grid of propagation directions, and methods for 
inverting for anisotropic attenuation are not fully 
developed. In this paper, we present basic theory allowing a 
description and parameterization of general triclinic 
anisotropic attenuation. We develop and numerically test 
inversion schemes for determining the parameters of 
anisotropic attenuation. We present a lab facility that 
allows for measuring anisotropic attenuation using the P-
wave ultrasonic sounding of spherical samples in 132 
directions distributed regularly over the sphere. The 
applicability of the proposed inversion methods and the 
performance of the experimental setup are exemplified by 
determining triclinic anisotropic attenuation of the 
serpentinite rock from Val Malenco, Northern Italy. The 
ray velocity and ray attenuation were measured on a 
spherical sample of the rock with diameter of 45.5 mm at 
the room temperature and under two pressure levels: 0.1 
and 20 MPa. The measurements confirmed that anisotropic 
attenuation is remarkably sensitive to confining pressure. 
Since cracks are closing with increasing pressure, 
attenuation decreases. However, changes in pressure can 
also induce changes in the directional variation of 
attenuation and a rotation of anisotropy axes. 

Introduction 
Anisotropic velocity and attenuation are efficiently 
described using a model of viscoelastic anisotropy. The 
viscoelastic parameters are complex valued and frequency 
dependent. Their real and imaginary parts describe elastic 
and attenuation anisotropy, respectively. The use of 
complex algebra allows for generalizing the theory 
developed for elastic anisotropy to viscoelastic anisotropy. 
The equations for waves in viscoelastic media are formally 
the same as in elastic media except for being complex. 
Implementing the complex algebra into equations is 
mathematically straightforward, but still some care is 
needed for understanding properly the physical meaning of 
all complex-valued quantities standing  in the equations. 
The model of viscoelastic anisotropy has been successfully 
applied in theoretical studies of propagation of plane waves 
as well as of waves radiated by point sources. It was 

recognized that similarly to differentiating between the 
phase and ray velocities in elastic media, the phase and ray 
attenuation must be distinguished in attenuating media 
(Vavryčuk 2015). In this paper, we generalize theory of 
inversion for viscoelastic anisotropy developed by 
Vavryčuk (2015) to be applicable to measurements in lab 
or field experiments. We demonstrate how to calculate ray 
attenuation from amplitudes of signals propagated in 
anisotropic rocks and develop an iterative inversion method 
for parameters of viscoelastic anisotropy. The accuracy and 
robustness of the inversion is numerically tested. Finally, 
we demonstrate the determination of parameters of 
anisotropic attenuation on measurements of the serpentinite 
rock from Val Malenco, Northern Italy studied by Kern et 
al. (2015). 

Method 
Attenuation is usually determined from amplitude decay, 
however, this decay depends also on other factors. 
Therefore, we first determine elastic anisotropy of the rock 
from measurements of the ray velocity (Svitek et al. 2014). 
Second, we calculate the radiation pattern and geometrical 
spreading of elastic waves propagating in the rock. Third, 
we correct the measured amplitude decay of the signal for 
these two factors and normalize the corrected value to a 
unit ray length. The inversion for viscoelastic anisotropy is 
numerically tested on an example of the P wave 
propagating in a model of an orthorhombic viscoelastic 
medium. The synthetic velocity anisotropy is taken to 
correspond to the Torre Alfina xenolith with parameters 
taken from Pera et al. (2003, their Table 3). The velocity 
and attenuation values are used for calculating the complex 
phase velocity which is inverted for the weak anisotropy-
attenuation parameters (WAA) of the medium. The 
inversion is performed using noise-free and noisy data. 
Noise is random with a uniform distribution. The noise 
level is different for the real and imaginary parts of the 
complex phase velocity c reflecting that the propagation 
velocity is usually measured with much higher accuracy 
than attenuation. The noise level for the real part of c varies 
from 0 to ±3% with step of 0.2%, and the level for the 
imaginary part of c varies from 0 to ±15% with step of 1%. 
To get statistically robust results, the random noise is 
generated 100 times and the results of the inversion are 
averaged over all noise realizations. Figure 1 shows a 
flowchart describing inversion process of measured data. 
We measured a spherical sample of diameter 45.5 mm of  
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serpentinite from Val Malenco, Northern Italy (Kern et al., 
2015). Data were measured in regular 15° grid providing 
132 independent directions. Sensors with flat surface create 
with spherical surface of the sample a “quazi-point” 
contact. According to this condition we measure rather 
group (ray) quantities than phase quantities. Amplitudes of 
the signal include effects of anisotropy as well as 
attenuation. To separate these two effects, we first 

recalculate group to phase quantities, invert for 15 weak 
anisotropy elastic parameters and through Green’s function 
calculate radiation pattern. The next step is an inversion for 
visco-elastic parameters. The results of the inversion can be 
seen in Fig. 2 and 3. The predicted phase velocity, 
attenuation and Q-factor (Fig. 3) are very similar to the 
input phase data (Fig. 2) indicating that the inversion was 
successful. 
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Figure 1 Flowchart of the inversion process 

 
Figure 2 The phase velocity, attenuation and quality factor for the serpentinite sample at confining pressure of (a) 0.1 MPa and (b) 

20 MPa. The phase quantities were calculated from the measured ray quantities and served as the input data for the 
inversion for parameters of viscoelastic anisotropy. 

 
Figure 3 The predicted phase velocity, attenuation and quality factor for the serpentinite sample at confining pressure of (a) 0.1 

MPa and (b) 20 MPa. The phase quantities were calculated using the weak anisotropy-attenuation (WAA) parameters 
retrieved by the inversion. 
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Linear-Slip Model Revised—Part I: Shales 

Tatiana Chichinina and Raul del Valle Garcia, Instituto Mexicano del Petróleo, México D.F. 

We study feasibility of the Linear-Slip model application 

for rock physics and seismic exploration. The Linear Slip 

(LS) model developed by Schoenberg (1980; 1983) is an 

effective-medium anisotropy model for rocks with parallel 

micro-cracks (e.g. Schoenberg & Sayers, 1995). Only four 

independent stiffness-tensor components {Cij} totally 

identify the LS-model of transversely isotropic (TI) 

symmetry, in contrast to five necessary components 

inherent to the overall TI-model (e.g. Bakulin et al., 2000).  

The LS-model constraints on C13 and S13. The fifth 

stiffness-tensor component C13 ceases to be independent in 

the LS model, and turns into the following function of other 

components {Cii}: 

6633116633

2

6613 2 CCCCCCC
LS

 .  (1) 

This restriction on the C13 for the LS model (of VTI-

symmetry) can be rewritten in terms of the compliance-

tensor components {Sij} as: 

S13=S12                                                           (2) 

(e.g. Hsu & Schoenberg, 1993). The equality S13=S12 means 

also the equality S31=S21 due to the tensor symmetry Sij=Sji. 

The equality S31=S21 leads to the equality for Poisson’s 

ratios 𝜈13=𝜈12 (because of S31=-ν13/E1 and S21=-ν12/E1 in 

VTI rocks, e.g. Sayers (2013). Thus, the equality 𝜈13=𝜈12 

turns out to be a necessary condition for the feasibility of 

the LS model. However, actually in the overall VTI model, 

there must be inequality 𝜈13≠𝜈12. For example, for shale’s 

rocks it should be the inequality 𝜈13>𝜈12 (Yan et al., 2015). 

There is the inequality 𝜈13<𝜈12 for thin-layered rocks 

(Sarout, 2016). Therefore, it turns out that the LS-model 

equality 𝜈13=𝜈12 is not feasible for real TI rocks 

(Chichinina et al., 2015; 2016a). 

The physical sense of the compliances S31, S21 (and/or 

Poisson’s ratios 𝜈13, 𝜈12) becomes clear from the virtual 

experiment of uniaxial loading by σ11 (at horizontal axis x1) 

of the VTI-rock-cylinder sample shown in Figures 1 and 2. 

Figure 1. Uniaxial loading 

of horizontal rock-cylinder 

sample of VTI-symmetry, by 

the σ11-stress. ε33 is the radial 

strain measured at the 

direction x3 (normal to the 

cracks’ planes); and ε22 is the 

strain parallel to the cracks’ 

planes (in x2-axis).  

The LS-model condition, 𝜈13=𝜈12, leads to isotropic-type 

equality of strains ε33=ε22, which is incomprehensible for 

the VTI-rocks, such as shale as an example (Chichinina et 

al., 2015, 2016a,b). Actually, because of the excess 

compliances of horizontal micro-cracks (shown by 

stretched springs in Fig.2,B) the strain ε33 at the normal-to-

cracks axis x3 should be greater than the parallel-to-cracks 

strain ε22 at the x2. That is ε33 > ε22 due to opening of micro-

cracks under uniaxial loading σ11. Actually, in shales the 

effective compliance tensor S is the sum (S = S0 + ΔS) of 

the host-rock compliance tensor S0, and the fracture- 

compliance tensor ΔS, which contains the excess 

compliances ZN and ZT for the horizontal micro-cracks in 

shales (e.g. Sayers, 1994, 1999, 2005, 2008, 2013, 2015).  

The deformation pattern predicted by the LS-model 

theory must be in a form of circle (ε33=ε22, shown in Fig.2, 

A). However, it is incomprehensible as it looks like an 

isotropy-type-deformation pattern that is contrary to the 

VTI-symmetry considered. Actually, in the VTI-model for 

fractured rocks, the deformation pattern should be in a form 

of ellipse (ε33 > ε22), shown in Fig. 2, B. Thus, it turn out 

that the LS-model condition S13=S12 (that means ε33 = ε22) 

were impossible and infeasible (Chichinina et al., 2015; 

2016a). 

Figure 2. Cross section x2x3 of the horizontal VTI-rock-

cylinder sample (shown in Fig.1) before (A) and after (B) 

uniaxial loading (by σ11) along x1-axis; the cross section (the 

plane x2x3) shown here is normal to the x1-axis of loading. Red 

arrows show stress-induced radial deformations ε33 and ε22, 

which are not equal, ε33 > ε22, because of excess compliances of 

cracks (shown by stretched springs, all parallel to the VTI-

symmetry axis x3).  

Statistical analysis on C13 in real-rocks’ data. We have 

studied the LS-model feasibility by testing the LS-model 

restriction on the C13, eq.(1); we examined a number of 

published experimental data on elastic components {Cij} in 

shales’ rocks (Thomsen (1986), Jakobsen & Johansen 

(2000), Wang (2002)) as shown in Fig.3. We have 

compared “true” elastic constant C13 found experimentally 

(from ultrasonic velocity measurements in shales’ cores) 

with the theory-predicted constant C13
LS for the LS model 

(from eq.(1)), by estimating the relative difference between 

them as 

∆C13=(C13
LS - C13)/C13.                         (3) 

We found the deviation ΔC13 for shale rocks to be rather 

great: up to ΔC13=100% (shown in Fig. 3) (Chichinina et 

al., 2016a).  
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Velocity patterns VP(θ) and VSV(θ). Given only four 

constants C11, C33, C44 and C66 (without C13), we may 

reconstruct the velocities’ patterns VSH(θ), VP(θ) and 

VSV(θ), by use of the upper and lower bounds for C13 

established by Yan et al. (2015): as C13_min < C13 < C13_max, 

where          )2( 661133max_13 CCCC  ,                            (4) 

66
2
66661133min_13 )2( CCCCCC  .                       (5) 

 

Figure 3. Histogram for N 

shale-rock samples, where 

N is the number of samples 

fallen in the certain interval 

of ∆C13-deviation (shown at 

horizontal axis, in %).  

The deviation ∆C13 is 

defined by eq.(3).  

Colored regions in Figure 4 show the area for all possible 

velocity patterns VP(θ) and VSV(θ) of P- and SV-waves. 

 

Figure 4. Phase velocities 

VP(θ), VSV(θ), and VSH(θ), where 

θ is the wave–incidence angle  

relatively the VTI-symmetry 

axis (normal to fracture planes). 

All available values of VP(θ), 

VSV(θ) fell  into the  colored 

regions, with the bounds of C13  

given by equations (4)–(5).  

The input data (C11, C33, C44 and C66) are taken from Sone & Zoback 

(2013) for shales Haynesville-1, P=20 MPa.  

We found out that the formula for the lower bound C13_min 

(eq. 5) coincides with the formula for C13
LS of the Linear-

Slip model, eq. (1). Therefore, the velocity VP(θ)LS for the 

LS model coincides with the lower-bound velocity VP(θ)min 

(marked with the inscription “Linear Slip” in Figure 4): 

VP(θ)LS =VP(θ)min. 

(For the SV-wave velocity, VSV(θ)LS=VSV(θ)max.) Therefore, 

the LS-theory-predicted velocity pattern VP(θ)LS cannot 

provide the true velocity pattern VP(θ) inherent to shales, 

because it represents only its’ lower-bound velocity 

VP(θ)min. The use of the LS-model-predicted constant C13
LS 

may lead to significant deviations in the estimates of VP(θ), 

VSV(θ) at all intermediate directions, i.e. between θ=0° and 

θ=90° (Chichinina et al., 2015, 2016a,b). Figure 5 shows 

∆VP,SV(θ)-velocity deviations as a function of ΔC13-

deviation. We estimated ∆VP,SV(θ) at the “middle angle” 

θ=45°, as: ∆VP,SV45 = (VP,SV45 – VP,SV45
LS)/ VP,SV45. We found 

out that the ΔC13-deviation affects more the VSV(θ)  than 

the VP(θ) as shown in Fig.5. 

The normal weakness ∆N depends on the C13 by the 

following manner: 

∆N = 1+ (C13 - C33)/(2C66)                        (6) 

(for detail, see Chichinina et al., 2016c). Given the “true” 

constant C13, one can estimate “true” ∆N. However if the 

true C13 is unknown, one can use eq. (1) for the theory-

predicted C13
LS, and obtain the theory-predicted ∆N

LS. We 

found out that this approach leads to erroneous result, 

because of the strong effect of the ΔC13-deviation. It results 

in great relative difference ∂(∆N) between the real ∆N and the 

theory-predicted ∆N
LS: ∂(∆N) = (∆N - ∆N

LS)/∆N ∙100%, shown by 

green line in Fig. 5 (see also Chichinina et al., 2016c). 

 
Figure 5. P-wave and SV-wave velocity deviations ∆VP45 and 

∆VSV45 as a function of the deviation ∆C13 (eq.(3)). ∂(∆N)-deviation 

of the normal weakness ∆N  is marked by green line.    

Thomsen’s (1980) parameter δ depends on C13. By 

analogy with the relative difference ∂(∆N), we estimated  the 

analogous difference ∆(δ) in  parameter δ  as a function of  

∆C13, shown in Fig.6. Estimation of δ is affected by the 

deviation in C13 very much: the maximum ∆(δ)-deviation 

reaches 1400% . 

 

 

 

Figure 6. Deviation ∆(δ) in 

Thomsen’s parameter δ as a 

function of ∆C13: 

%.100/)()(  LSLS 
  

Input data are the same as 

 for Fig. 4 and Fig.5. 

Conclusions 

The LS-model constraint on the stiffness C13 (eq.1) is non-

feasible for real rocks, and is always broken for shales as a 

certain example considered in this paper. Therefore, the use 

of the LS-model-predicted C13 can lead to inaccurate results 

in prediction of the VP(θ)- and VSV(θ)-velocities as well as 

in estimation of the normal weakness ∆N and Thomsen’s 

parameter  δ. That in turn can lead to erroneous conclusions 

in fracture characterization of transversely isotropic 

hydrocarbon source rocks such as shales, for example, 

wrong crack-density estimation from inaccurate estimation 

of ΔN. Moreover, it may lead to erroneous results of fluid-

saturation analysis based on wrong estimate of the 

compliances’ ratio ZN/ZT. The latter depends on estimation 

of the normal compliance ZN, which in turn depends on the 

accuracy of ∆N-estimation (for detail, see Chichinina et al., 

2016c). In addition, it may cause erroneous results in 

estimation of Thomsen’s parameter δ affected by the ΔC13-

deviation.  The LS model works well only for the following 

two cases: the first is ΔN=0 (that is 100%-saturation of 

fluid, δ < 0), and the second is ΔN = ΔT, which means δ = 0.  
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Linear-Slip Model Revised—Part II: Estimation of Fracture Compliances  
Tatiana Chichinina and Raul del Valle Garcia, Instituto Mexicano del Petróleo, México D.F. 

Summary 

There are the normal and the tangential fracture 

compliances ZN and ZT used to be estimated from the 

velocity measurements in fractured rocks’ samples [e.g. 

Hsu & Schoenberg, 1993; Sayers and Han, 2002; Angus et 

al. 2009; Lubbe et al. 2008; Verdon and Wustefeld, 2013; 

Choi et al., 2014; Yousef and Angus, 2016]. Accurate 

ZN/ZT-ratio estimation is important as a fluid-saturation 

indicator that is ZN/ZT1 for dry (drained) cracks, and 

ZN/ZT0 for fully saturated cracks (e.g. Hsu & 

Schoenberg, 1993; Bakulin et al., 2000).  

In the Linear-Slip model, there is constraint on the 

stiffness-tensor component C13 (e.g. Hsu & Schoenberg, 1993): 

 .2 6633116633

2

6613 CCCCCCC
LS

 (1)

This constraint leads to inaccurate estimation of fracture 

parameters such as the normal weakness ∆N, and the 

normal compliance ZN, as well as the compliances´ ratio 

ZN/ZT. There is ∆C13-deviation defined as 

∆C13 = (C13
LS - C13)/ C13,                         (2) 

where C13 is the real constant obtained from the velocity 

measurements in a rock-core sample, and the C13
LS is the 

theory-predicted constant, calculated from equation (1), e.g. 

Chichinina et al. (2015, 2016a, b, c). We revise accuracy of 

∆N- and ZN/ZT-estimation depending on the ∆C13-deviation 

(shown in Figs.1-4), using published data of Hsu & 

Schoenberg (1993), and in addition, the data of Far (2011; 

2014) from similar experiment with artificial fractured 

sample formed by compressed plexiglass plates.  

In classic experiment of Hsu & Schoenberg (1993), the 

∆C13-deviation was small, with a maximum ∆C13-deviation 

of ~4%, shown in Fig. 1 (by blue dashed line). Even in the 

case of these moderate ∆C13-deviations, the estimation of 

the normal weakness ∆N is not certain and unique, that is in 

contrast to the tangential weakness ∆T (both shown in 

Fig.1). The tangential weakness ∆T does not depend on C13 

and therefore its estimation is unique and certain. The ∆T is 

estimated as ∆T=1-C44/C66, C44=ρVS0
2, and C66=ρVSH90

2, 

where VS0 is the symmetry-axis shear-wave velocity at 

θ=0° that is at the normal to fractures’ planes; VSH90 is the 

SH-wave velocity at θ=90°. 

Figure 1. Normal weakness ΔN estimated by 4 ways, eqs.(3)-(6), 

(colored solid lines), and the tangential weakness ∆T (fine dotted 

line with asterisks), versus pressure [MPa]. Blue dashed line (with 

crosses) shows the deviation ∆C13 (%), eq.(2), with its value given 

at the right-side scale axis.  The data of Hsu & Schoenberg (1993) 

for the case of “dry cracks” (0%-saturation) is used. 

However, the normal-weakness ΔN-estimation is 

ambiguous, because of the C13, which enters in it. The 

∆C13-deviation in C13
LS implies inaccuracy in estimation of 

the normal weakness ∆N (shown in Fig.1). Given stiffness 

tensor {Cij} for the LS model, the normal weakness ΔN can 

be estimated by the following four different ways, 

depending on certain triplet combination: (C11,C33,C66), or 

(C13,C33,C66), or (C11,C33,C13), or (C11,C66,C13), which may enter 

in ΔN: 
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The first method for ∆N–estimation (eq.(3)) is based on the 

LS-model restriction for C13
LS (eq.(1)). This method is 

suitable only in the case, when the condition (1) for C13 is 

met; that means zero ΔC13-deviation. All four methods give 

the same result in this case of ΔC13=0. In fairness, we may 

note that our two ways (of the total four)  in ∆N-estimation 

are the same as those in the article of Hsu & Schoenberg 

(1993) (unfortunately their equations were written in an 

implicit form there). Thus, we have found two more ways 

of ∆N–estimating (eq.(5) and eq.(6)) in addition to those 

two given by Hsu & Schoenberg (1993). 

Given ΔN (Fig.1), we can obtain the normal compliance ZN 

as ZN=∆N/С33, using C33=(λ+2µ)(1-∆N), or C33=ρVP0
2, 

where VP0 is the P-wave velocity at θ=0° that is at the 

normal to fractures’ planes. The tangential compliance ZT

can be estimated as ZT=∆T/C44, where С44=µ(1-∆T) or 

C44=ρVS0
2. Finally, we can estimate the normal-to-

tangential-compliance ratio ZN/ZT by 4 ways, as shown in 

Figure 2. Thus, four different ∆N-estimations (eqs. (3)-(6)) 

have led to four different estimates of ZN/ZT-ratio.  

Figure 2. The normal-to-tangential-compliance ratio ZN/ZT 

estimated by four ways for dry-cracks’ model (shown by solid 
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line). The gray dotted line (with asterisks) denotes the ratio ZN/ZT 

at 100%-saturation (honey was used as a saturation fluid).  

In the experiments of Far (2011, 2014), the plates’-stack 

models were used in two versions: 1-the first model 

includes penny-shaped rubber inclusions inserted between 

the plexiglass plates, and 2-the second one is the usual 

model of plates, which is similar to that of Hsu-Schoenberg 

(1993). Far (2011) carried out experiments with both 

models at two frequency ranges: the low frequency range 

of 90/120 kHz and the higher frequency range with 

fmax=480 kHz. Fig. 3 shows the larger deviations ΔС13 

estimated for the model with inclusions (marked by 

triangles ▲ and ▼) than the model without inclusions (the 

latter marked by ■ and ♦). Therefore, we have obtained 

enormous dispersion in ΔN- and ZN- estimations in the 

model with inclusions, in comparison with the model 

without inclusions. Consequently, this leads to a conclusion 

that the Linear-Slip model is not suitable for the model with 

inclusions in the experiment of Far (2011). Whilst in the 

usual model of plates (without inclusions, fmax=480 kHz 

(♦)), we estimated even less ΔС13-deviation (for the 

pressures P > 6.5MPa) than in the experiment of Hsu-

Schoenberg (●) as shown in Fig.3. 

 
Figure 3. ∆C13-deviation (defined by eq. (2)) estimated from 

the data on  the velocity measurements in plexiglass-plate-stack 

models (Hsu & Schoenberg, 1993; Far, 2011). The notation 

"inclusions" in the legend means the model with rubber discs.  
 

Given ΔN estimated by four ways according to the formulas 

(3)-(6), we have four estimates of ZN/ZT, shown in Fig.4 for 

the model without inclusions, fmax=480 kHz.  

 
Figure 4. ZN/ZT estimated by 4 ways from the data of Far (2011), 

without inclusions, fmax=480KHz (colored solid lines with symbols, 

the notation is the same as in Figs. 1-2). Blue dashed line (with 

crosses) shows the deviation ∆C13 (%).The gray dotted line (with 

asterisks) denotes the ratio ZN/ZT estimated for the model with 

cracks filled with rubber inclusions (fmax=480KHz). 

There were no any experiment by Far (2011) with fluid 

saturation, and therefore, for the comparison we have 

inserted an additional chart obtained for the model with 

rubber inclusions, marked by gray dotted line with asterisks 

in Fig.4. By comparing ZN/ZT in these two experiments 

with filled cracks (by Hsu & Schoenberg (1993) and by Far 

(2011)) shown in Figure 2 and Figure 4, it becomes clear 

that the case of the cracks with rubber inclusions is 

somewhat similar to the case of honey-filled cracks. 

Actually, in both experiments, the ZN/ZT-ratio (ZN/ZT0) 

is smaller than that in empty cracks (without infill) that is 

due to similar reduced bulk modulus K in rubber and 

honey, which is comparable with the shear modulus μ in 

the host rock. This is in a good agreement to the theory, 

according to which (ZN/ZT)dry > > (ZN/ZT)saturated (e.g. 

Bakulin et al., 2000). 

Conclusions 

Given formulas (3)-(6), there are four ways in the ∆N–

estimation; these have resulted in four different ZN-

compliance estimates. Given four estimates of ZN, we have 

obtained four different estimates for the compliances’ ratio 

ZN/ZT from the input data on {Cij} for the experiment of 

Hsu & Schoenberg shown in Figure 2, (as well as four 

different ZN/ZT-estimations for Far´s experiment shown 

Figure 4). These four ZN/ZT–estimations coincide only 

when the deviation ∆С13 goes to zero: ∆С130. 

 In real rocks, because of the great ΔС13-deviation 

estimated by the analysis of rock-samples data (e.g. 

Chichinina et al. 2016-a, b, c), the uncertainty in ZN/ZT-

estimation may result in inaccuracy in fluid-saturation 

prediction. In seismic exploration, it may lead to ambiguity 

in distinguishing gas from water in fractures as an example. 

Following the theory, ZN/ZT should go to zero for water- 

saturated cracks, ZN/ZT0, and ZN/ZT1 for gas-filled 

cracks; however, there is great dispersion found out in 

ZN/ZT-estimation that makes infeasible an accurate 

prediction of the crack infill. That is to say, there is no 

single solution in the problem of estimating of the normal 

fracture weakness ΔN (and the ZN) from a given LS-

stiffness tensor {Cij} because of the inherent LS-stiffness-

tensor inconsistency. 

 Despite the well-established practice of the LS-model 

usage for identification and characterization of naturally 

fractured reservoirs (e.g. Bakulin et al., 2000) as well as 

gas-shale plays (Sayers, 1999, 2005, 2008, 2013), we 

recommend its application with great precaution. Based on 

the infeasible and unjustified condition for the C13, eq. (1), 

the Linear-Slip model is flawed. The limitation on the C13 

is incorrect for majority of real rocks, moreover, it is 

contradictory to the physical sense of elastic and 

geomechanics properties of TI rocks (Chichinina et al., 

2015, 2016-a,b,c). Presented examples have confirmed our 

general conclusion on impracticability of the LS-model 

application in estimation of the fracture compliance ZN as 

well as the ZN/ZT-ratio for seismic fracture characterization. 
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An acoustic eikonal equation for attenuating, orthorhombic media 
Qi Hao*, NTNU; Tariq Alkhalifah, KAUST 

Summary 
We have presented an acoustic eikonal equation governing 
the complex-valued traveltime of P-waves in attenuating, 
orthorhombic media. The eikonal equation has been solved 
by the combination of perturbation theory and Shanks 
transform. For a horizontal, attenuating orthorhombic layer, 
the imaginary part of the complex-valued reflection 
traveltime has the non-hyperbolic behavior.  

Introduction 
For an attenuating, orthorhombic medium, the complex-
valued traveltime is expressed by R It t it  , where “i” 

denotes the imaginary unit, Rt  and It  denote its real and 

imaginary parts. 
The combination of Tsvankin’s (1997) and Zhu and 
Tsvankin’s (2006) notations entirely describe an 
attenuating, orthorhombic medium. If we use only P-waves, 
as is done in practical cases, however, we may consider the 
acoustic assumption that the P-wave velocity and 
attenuation are independent of the shear-wave velocity 
parameter 0S  defined in Tsvankin’s (1997) notation. By 

setting 0S  zero, some shear-wave parameters from 

Tsvankin’s (1997) notation and Zhu and Tsvankin’s (1997) 
disappear in the P-wave attenuating eikonal equation. This 
means that we may use fewer parameters to describe the P-
wave traveltime in attenuating orthorhombic media.  
For an attenuating orthorhombic medium under the 
acoustic assumption, its non-attenuating reference may be 
appropriately characterized by the modified Alkhalifah’s 
(2003) notation, which includes the velocity 0P of 

vertically propagating P-waves, the normal moveout 
(NMO) velocities 1n  and 2n  defined in the [y, z] and [x, 

z] symmetry planes, the anellipticity parameters 1 , 2  and

3 defined in the [y, z], [x, z] and [x, y] symmetry planes.

Besides, we also use the following parameters from Zhu 
and Tsvankin’s (2007) notation: the attenuation coefficient 

0PA of P-waves propagating along z-axis, the fractional 

differences 1Q and 2Q between the attenuation coefficients, 

defined in the y- and z-directions, and defined in the x- and 
z-directions; the second-order derivatives 1Q , 2Q  and 

3Q  of the P-wave attenuation coefficient, defined in the [y, 

z], [x, z] and [x, y] symmetry planes, respectively. 

The acoustic eikonal equation 
For attenuating, orthorhombic media with the symmetry 
planes orthogonal to the Cartesian coordinates, we derive 
the eikonal equation under the acoustic assumption, 
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where the subscript “,” denotes the spatial derivative; for 
example, ,x  denotes the partial derivative of complex-

valued traveltime   with respect to x variable; ijc  are 

density-normalized stiffness coefficients,  
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From equation 1, we obtain the acoustic eikonal equation in 
the [x, z] plane of an attenuating, transversely isotropic 
medium, 
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where n  denotes the NMO velocity,   denotes the 

anellipticity parameter, Q  and Q  are the attenuation-

anisotropy parameters. 

The approximate solution 
We adopt a perturbation method to solve equation 1. The 
vector of perturbation parameters is defined as 

1 2 3 1 1 2 2 3( , , , , , , , )T
Q Q Q Q Q        ,   (13) 

to represent the trial solution to equation 1, 
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From equations 1 and 14, we derive the following 
equations for the traveltime coefficients 0 , i  (i=1,…,8) 

and ij  (i,j=1,…,8, and i j ), 
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  ,                (15) 

0, , 0, , 0, ,
2 2 2
2 1 0 0( )x i x y i y z in n P iz f         ,        (16) 

2 2 2
2 1 0 0 10, , 0, , 0, , 8( , ,..., )n n P ijx ij x y ij y z ij z f             .  (17) 

Applying Shanks transform to equation 14 leads to  
2

1
0

1 2

T
T

T T
  


 ,                         (18) 

with 

0 0T   , 
8

1
1

i i
i

T 


   , 
8

2
, 1;

ij i j
i j i j

T 
 

     .       (19) 

Figures 1 and 2 illustrate that equation 19 is accurate for 
homogeneous, attenuating, orthorhombic media with strong 
attenuation and attenuation anisotropy.  

 
A horizontal, attenuating, orthorhombic layer 
Assuming 0 1PA  , the real-part Rt  of the traveltime is 

independent of 0PA  and all attenuation-anisotropy 

parameters. For a horizontal, attenuating, orthorhombic 
reflector, we obtain the expansion of the imaginary part It , 

42
2 2 2

0 0 2 2 4
0

2 ( )
( , )

( ) ( )
Q

I P
Q Q

rr
t r A t

t

 


   

 
    

 
 ,          (20) 

where 0t  denotes the two-way zero-offset traveltime in the 

non-attenuating reference; r  denotes the radial source-
receiver offset; ( )Q   and ( )Q   are functions of 

acquisition azimuth  , describing the azimuthal NMO 
velocity and anellipticity for the time 0/I Pt A ; ( )Q   is 

given by  
2 2

2 2 2
1 2

1 sin cos

( )Q Q Q

 
   

   ,                      (21) 

with 

0 1
1

1 1

(1 2 )
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P

Q
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
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(1 2 )
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Q

Q
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


 

,    (22) 

where 1Q  and 2Q  are the NMO velocities for 0/I Pt A  

along y- and x-axes, respectively; 1  and 2  are the 

Thomsen parameters defined in the [y, z] and [x, z] 
symmetry planes of a non-attenuating, orthorhombic media. 
Figure 3 shows an example of the azimuthal variations of 
NMO velocities and anellipticities for Rt  and 0/I Pt A . 
 
Conclusions 
The acoustic eikonal equation describes the complex-
valued traveltime of P-waves in attenuating, orthorhombic 

media. The combination of a perturbation method and 
Shanks transform provides an accurate solution to the 
acoustic eikonal equation for homogeneous, attenuating, 
orthorhombic media. For a horizontal attenuating 
orthorhombic layer, the imaginary part of complex-valued 
traveltime as a function of the acquisition azimuth and the 
source-receiver offset has a non-hyperbolic behavior. 
 
Acknowledgments 
Q. Hao thanks ROSE project for financial support, and 
Alexey Stovas for reading this manuscript.  
 
References 
Alkhalifah, T., 2003, An acoustic wave equation for 
orthorhombic anisotropy: Geophysics, 68, 1169–1172. 
Tsvankin, I., 1997, Anisotropic parameters and P-wave 
velocity for orthorhombic media: Geophysics, 62, 1292-
1309. 
Zhu, Y., and I. Tsvankin, 2007, Plane-wave attenuation 
anisotropy in orthorhombic media: Geophysics, 72(1), D9-
D19. 
 

 

Figure 1. Absolute errors in the real part of the complex-valued 
traveltime from equation 18 for a homogeneous, attenuating 
orthorhombic medium. The plots correspond to propagation 
azimuths 0 (left), / 4 (middle) and / 2 (right). The source is 
located at the origin of Cartesian coordinate system. The lateral 
coordinate r  denotes the radial distance. The model parameters 

are 0 3 /P km s  , 1 2.846 /n km s  , 2 3.29 /n km s  , 1 0.28  , 

2 1.67  , 3 0.23  , 0 0.025PA   (corresponding to quality 

factor equal to 20), 1 0.66Q  , 1 0.52Q  , 2 0.33Q   , 

2 0.98Q  , and 3 0.94Q  .  

 

Figure 2. Similar to Figure 1, but for the imaginary part of the 
complex-valued traveltime.  

            
Figure 3. The azimuthal variation of the NMO velocities (left) and 

anellipticities (right) for Rt  (dashed black lines) and 0/I Pt A  (solid 

gray lines). 

17th International Workshop on Seismic Anisotropy

60
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1 Introduction

We study if, under what conditions, and to which extent, it is possible to retrieve information about weak
to moderate anisotropy from P-wave traveltime data, assuming homogeneity of an anisotropic medium.
We consider a vertical seismic profiling (VSP) experiment, which provides a good angular illumination
of the medium. The use of the weak-anisotropy parameterization of the model reduces to 15 the number
of the so-called weak-anisotropy (WA) parameters describing the most general P-wave anisotropy. We
study effects of traveltime approximation, varying noise level and the experiment configuration on the
quality of the recovery of the WA parameters. We show that the used parameterization of the model
allows even the reconstruction of the phase-velocity surface of the studied medium.

2 Inversion formula

Our inversion scheme is based on the simplifying assumption that the ray-velocity v(N) and phase-
velocity c(n) vectors are equal. Here N and n are ray and phase vectors, unit vectors parallel to the
ray- and phase-velocity vectors. In this approximation the squared ray velocity v(N) reads (Pšenč́ık and
Farra, 2005):

α2
0

(
1 + 2(ϵxN

4
1 + ϵyN

4
2 + ϵzN

4
3 + δxN

2
2N

2
3 + δyN

2
1N

2
3 + δzN

2
1N

2
2 )

+4[(ϵ15N3 + ϵ16N2)N
3
1 + (ϵ24N3 + ϵ26N1)N

3
2 + (ϵ34N2 + ϵ35N1)N

3
3

+(χxN1 + χyN2 + χzN3)N1N2N3]
)
= v2(N) = c2(n) = r2/t2 . (1)

Here, ϵx, ϵy, ϵz, δx, δy, δz, χx, χy, χz, ϵ15, ϵ16, ϵ24, ϵ26, ϵ34 and ϵ35 are the sought WA parameters and
Ni are components of the known ray vector N, specifying the source-receiver direction. α0 is the P-wave
velocity of a reference isotropic medium. It is introduced to define the WA parameters, equation (1) is
independent of α0. If the ray velocity v(N) is asumed to be known, linear inversion can be used, if the
source-receiver distance r and traveltime t are assumed to be known, non-linear inversion must be used.

3 Synthetic tests

We consider a homogeneous model of tilted orthorhombic symmetry. Two VSP configurations are consid-
ered with sources on the surface distributed along profiles or randomly. In each of these configurations,
we calculate exact traveltimes using the program package ANRAY (Gajewski and Pšenč́ık, 1990). These
traveltimes with added Gaussian noise are used in equation (1) for the inversion of WA parameters. Fig-
ure 1 shows results of such an inversion for the profile (left) and random (right) distribution of sources.
Superiority of the random distribution of sources is clearly visible. In Figure 2, relative differences be-
tween estimated and exact values of phase-velocity surfaces are shown. The estimated values of the phase
velocity v(n) are obtained from equation (1) with estimated values of WA parameters (crosses in Figure
1). Again, superiority of the random distribution of sources is visible.

4 Conclusions

Although we use very rough approximation for the ray velocity, v(N) = c(n), the use of traveltime data
with random noise leads to satisfactory estimates of WA parameters. As shown in the presented examples,
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even tilted orthorhombic symmetry should be treated as general anisotropy. When weak-anisotropy
approximation is used, it means that 15 P-wave WA parameters must be considered. Although based
on the weak-anisotropy approximation, the inversion scheme can be used even for moderate anisotropy.
Anisotropy of the above-presented medium was around 25%. The above tests indicate clear superiority
of the random distribution of sources. Next planned steps are the generalization of the inversion scheme
to inhomogeneous anisotropic media, estimates of the type of anisotropic symmetry from inverted WA
parameters, use of the S waves in the inversion process.
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Figure 1: Results of the inversion of traveltimes with 0.005s noise generated by 50 sources distributed
along 5 profiles (left) and randomly distributed (right) on the surface of the model, and recorded by 4
receivers in the borehole. Open squares: exact values of WA parameters, crosses: estimated values of
WA parameters, error bars represent square roots of diagonal elements of the covariance matrix.
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Figure 2: Relative differences between estimated (equation (1)) and exact phase velocity surfaces. WA
parameters used in equation (1) are estimated from inverted traveltime data with 0.005s noise, generated
by 50 sources distributed along 5 profiles (left) and randomly distributed (right) on the surface of the
model.
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SUMMARY

Wavefield tomography can handle complex subsurface geol-
ogy better than ray-based techniques and, ultimately, provide
a higher resolution. Here, we implement forward and adjoint
wavefield extrapolation for VTI (transversely isotropic with
a vertical symmetry axis) media using a generalized pseu-
dospectral operator that employes a separable approximation
of the P-wave dispersion relation. This operator is employed
to derive the gradients of the differential semblance optimiza-
tion (DSO) and modified image-power objective functions.
We also obtain the gradient expressions for the data-domain
objective function, which can incorporate borehole informa-
tion necessary for stable VTI velocity analysis. These gra-
dients are compared to the ones obtained with a space-time
finite-difference (FD) scheme for a system of coupled wave
equations. Whereas the kernels computed with the two wave-
equation operators are similar, the pseudospectral method is
not hampered by the imprint of the shear-wave artifact. Nu-
merical examples also show that the modified image-power
objective function produces cleaner gradients than the more
conventional DSO operator.

SEPARABLE P-MODE APPROXIMATION

Anisotropic wavefield tomography is typically implemented
under the pseudoacoustic assumption originally proposed by
Alkhalifah (1998). Acoustic modeling in TI media can be
performed with space-time FD schemes applied to coupled
second-order equations (Fletcher et al., 2009). Generalized
pseudospectral methods provide an alternative way to propa-
gate only P-waves without the shear-wave artifacts. Separable
P-mode dispersion-relation approximations for TI media are
described in Du et al. (2014).

Pseudospectral methods are designed to evaluate the spatial
wavefield derivatives in the wavenumber domain. Anisotropic
extrapolation requires approximate dispersion relations with
separable wavenumber and model-parameter terms. Employ-
ing the first-order Padé expansion, the P-wave separable dis-
persion relation for VTI media is obtained as (Schleicher and
Costa, 2015):

ω
2 =(1+2ε)V 2

P0 k2
x +V 2

P0 k2
z −2(ε−δ )V 2

P0
k2

x k2
z

k2
x + k2

z

×
[
1−2ε

k2
x

k2
x + k2

z
+2(ε−δ )

k2
x k2

z

(k2
x + k2

z )
2

]
,

(1)

where kz and kx are the vertical and horizontal wavenumbers.

IMAGE-DOMAIN OBJECTIVE FUNCTIONS

Extended images are produced by retaining the correlation lags
between the source and receiver wavefields in the output. The
general imaging condition can be formulated as follows (Sava
and Vasconcelos, 2011):

I (x,λ ,τ) =
∑
e,t

Ws (x−λ , t− τ)Wr (x+λ , t + τ) , (2)

where I(x,λ ,τ) is the extended image, Ws and Wr are the source
and receiver wavefields, respectively, λ is the space lag, and
τ is the time lag. Nonzero-lag energy can be used to update
the migration velocity model by applying the DSO operator
(Symes and Carazzone, 1991). For the horizontal space-lag
extended image I, the DSO objective function has the form:

JDSO =
1
2
‖λx I(x,z,λx)‖2

`2
, (3)

where λx is a penalty operator. Another commonly used (stack-
power) objective function measures zero-lag energy:

JST =
1
2
‖I(x,z,λx = 0)‖2

`2
. (4)

Zhang and Shan (2013) propose a “partial” image power ob-
jective function that combines the criteria in equations 3 and 4
without the need to find optimal weights for JDSO and JST :

JPST =−1
2
‖H(λx) I(x,z,λx)‖2

`2
, (5)

where H is a Gaussian operator centered at zero-lag.

GRADIENT COMPUTATION USING
THE ADJOINT-STATE METHOD

Here, we employ the adjoint-state method (Plessix, 2006) to
obtain the gradient expressions. For waveform inversion of
reflection data, Alkhalifah and Plessix (2014) suggest to de-
fine the model vector as m = {Vnmo,η ,δ}. The source- and
receiver-side gradients of the partial image power objective
function (equation 5) are found as:

∂J
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=+
∑
e,τ
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2V 2
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(1+2δ )2 k2
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[
k2

x ui ?ai +
k2

z
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ui ?ai+

2η
k4

x
k2

x + k2
z

ui ?ai], i = s,r,

(6)
where i denotes either the source or receiver side.
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(a) (b) (c)

Figure 1: Space-lag CIGs for a horizontal VTI layer computed at x = 4 km using the pseudospectral extrapolator with (a) η = 0, (b)
η = 0.15 (actual value), and (c) η = 0.3.

(a) (b)

Figure 2: Gradients of the partial image-power function (equation 5) computed using the pseudospectral extrapolator for (a) η = 0
and (b) η = 0.3.

SYNTHETIC EXAMPLE

The medium parameters are specified on a rectangular grid,
and the density is assumed to be constant. We compute the
η-gradient in the image domain using reflection data. The
model includes a horizontal interface beneath a homogeneous
VTI layer with Vnmo = 2 km/s, η = δ = 0.15, and a thickness
of 2 km. We generate horizontal-space-lag extended images
(Figure 1) and obtain the η-gradients for understated and over-
stated values of η . The η-errors induce residual energy in ex-
tended images (Figure 1) that has a linear (“V”-like) shape typ-
ical for near-horizontal interfaces (Sava and Alkhalifah, 2012;
Li et al., 2015). Due to the aperture truncation, the extended
images also contain considerable residual energy, which can
introduce bias in the image-domain objective function and lead
to false model updates.

The gradient of the DSO objective function for the understated
η-field is strongly influenced by the kinematic artifacts in the
extended image. The contribution of the artifact is even larger
than that of the residual induced by the η-error because the
artifact is located closer to the physical sources and receivers.
The partial-image power objective function (equation 5) sig-
nificantly reduces the influence of the artifact and produces
cleaner gradients (Figure 2).

REFERENCES

Alkhalifah, T., 1998, Acoustic approximations for processing
in transversely isotropic media: Geophysics, 63, 623–631.

Du, X., P. J. Fowler, and R. P. Fletcher, 2014, Recursive inte-
gral time-extrapolation methods for waves: A comparative
review: Geophysics, 79, T9–T26.

Fletcher, R. P., X. Du, and P. J. Fowler, 2009, Reverse time
migration in tilted transversely isotropic (TTI) media: Geo-
physics, 74, WCA179–WCA187.

Li, V., I. Tsvankin, and T. Alkhalifah, 2015, 102, in Analysis
of RTM extended images for VTI media: 519–524.

Plessix, R.-E., 2006, A review of the adjoint-state method for
computing the gradient of a functional with geophysical
applications: Geophysical Journal International, 167, 495–
503.

Sava, P., and T. Alkhalifah, 2012, Anisotropy signature in ex-
tended images from reverse-time migration: SEG, Techni-
cal Program Expanded Abstracts, 1–6.

Sava, P., and I. Vasconcelos, 2011, Extended imaging condi-
tions for wave-equation migration: Geophysical Prospect-
ing, 59, 35–55.

Schleicher, J., and J. C. Costa, 2015, A separable strong-
anisotropy approximation for pure qp wave propagation in
TI media, in SEG Technical Program Expanded Abstracts:
685, 3565–3570.

Symes, W. W., and J. J. Carazzone, 1991, Velocity inversion by
differential semblance optimization: Geophysics, 56, 654–
663.

Zhang, Y., and G. Shan, 2013, 937, in Wave-equation migra-
tion velocity analysis using partial stack-power maximiza-
tion: 4847–4852.

17th International Workshop on Seismic Anisotropy

64



Numerical Ray Tracing in 1D Triclinic Layered Media 

Igor Ravve* and Zvi Koren, Paradigm Geophysical 

Summary 

We present practical aspects of numerical ray tracing for 

pure-mode and converted waves in 1D triclinic layered 

media. Tilted Orthorhombic (TOR) layer parameters are 

internally transformed into triclinic parameters. The model 

parameters are assumed piecewise-constant, and there is no 

need to solve differential equations. Starting with a given 

reflection point, we first solve the forward “shooting” 

problem: For a given opening angle between the incidence 

and reflection phase velocities, and a slowness azimuth, we 

compute the surface offset, its azimuth and the traveltime. 

We then solve the inverse “two-point ray tracing” problem, 

where for a given surface offset and its azimuth, we find 

the subsurface opening angle, the phase azimuth and the 

traveltime. 

Introduction 

We consider triclinic anisotropic layers which can also be 

obtained from, for example, Tilted Orthorhombic (TOR) 

layers. TOR medium is defined by nine elastic properties of 

the medium and three orientation parameters, which may 

be Euler angles of successive rotation ZYZ. Elastic 

properties are normally specified in the local orthorhombic 

(ORT) frame of reference and include compressional 

velocity Pv  along local 3x  axis, parameter 

22

1
/1 PSx vvf  , where

1Sxv is the “vertical” shear 

velocity polarized in local 1x , and seven Thomsen-style 

parameters .,,,,,, 2121321  By applying the Bond 

(1943) transform, we rotate the stiffness matrix from the 

local to global axes, resulting with 21 elastic coefficients 

(triclinic anisotropic layers). First, we split the opening 

angle in two parts: incident and reflected. For a medium 

where the reflection plane is not the plane of symmetry, 

these two angles are not equal even for pure-mode wave. 

The opening angle yields also the horizontal slowness. 

Note that for a given ray pair, the horizontal slowness and 

its azimuth are the same for all layers of the package. Next, 

for each layer, we compute the slowness surface 

 213 , ppp . This surface and its partial derivatives make it 

possible to compute the Cartesian components of the ray 

velocity which, in turn, yield the contribution of this layer 

into the two offset components and the traveltime. The 

layers are passed twice: for up-going and down-going 

waves. We consider all six types of waves: pure-mode P, 

S1 and S2, and converted P-S1, P-S2 and S1-S2, where S1 

and S2 are fast and slow shear, respectively, i.e., we 

distinguish two shears by the magnitudes of their phase 

velocities rather than by their polarization. The inverse 

“two-point ray tracing” problem is solved numerically by 

Newton method.  

Splitting of Opening Angle 

The opening angle phs  is defined as that between the 

phase velocity (or slowness) directions of the incidence and 

reflection rays at a given subsurface point on a reflection 

surface. From Snell’s law, both of them and the normal to 

the reflection surface are in the same plane, so that 

phs
re
phs

in
phs    .  (1) 

where 
in
phs and 

re
phs are the incidence and reflection 

angles, respectively. The two rays are assumed emerging 

from the reflection point. Thus, their azimuths differ by  . 

The azimuth of the reflection ray is phs , and the azimuth 

of the incidence ray is  phs . Due to Snell’s law, the 

horizontal slowness hp  of the two rays is identical, 

   
hp

vv



 phs
re
phs

re
phs

re
phs

phs
in
phs

in
phs

in
phs

,

sin

,

sin








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Eventually, we compute the Cartesian components of 

horizontal slowness, which are identical for all layers, 

phs2phs1 sin,cos  hh pppp  . (3) 

Slowness Surface 

The Slowness surface is a continuous function that defines 

the vertical slowness component given two horizontal 

components,  213 , ppp . It is defined by the eigenvalue

equation of Christoffel matrix for a triclinic medium with 

21 independent stiffness coefficients, where the magnitude 

and the direction of the phase velocity are replaced by, 

2
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2
2

2
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2
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2
2

2
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2
phs ,

1

ppp

p
n

ppp
v i

i






  .    (4) 

The vanishing determinant “explodes” in 950 monomials 

which can be grouped by identical powers of 321 ,, ppp , 

and this leads to only 50 coefficients that depend on the 

stiffness components alone. The vertical slowness is given 

by a sixth-order polynomial equation, 

0031
2
32

3
33

4
34

5
35

6
36  ApApApApApApA ,  (5) 

where the coefficients kA  depend on 21, pp , except 6A

which is constant. Equation 5 may have up to six real roots, 
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or one or more complex conjugate pairs. As the horizontal 

slowness increases, first the P-wave roots become 

evanescent, then S1 and finally S2. The number of real 

roots is always even, where in each pair there is a root 

corresponding to up-going and down-going waves. Most 

often vertical slowness of the up- and down-going waves 

has different signs, but there may be also a case with the 

two roots of the same sign that belong to the same wave 

type. Still, one of them is up-going and another down-

going. The corresponding vertical components of the ray 

velocity will necessarily have opposite signs. To compute 

the ray velocity components, we will need also derivatives 

of the slowness surface, 
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The computation of the coefficient’s derivatives kA  is 

straight forward as they are polynomials of 21, pp . Roots 

of the smallest slowness magnitude correspond to P-wave, 

medium to S1 shear and largest to S2. 

 

Ray Velocity, Offset and Traveltime 

 

The slowness surface and its derivatives yield the ray 

velocity components (Grechka et al., 1997), 
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We consider both rays emerging from the reflection point, 

so they both may be considered up-going, provided we take 

in account that their phase azimuths differ by  . After the 
ray velocity is computed we find the one-way contributions 

of the given layer into the offset and traveltime, 
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where z  is the layer thickness. 

 

Inversion: Two-Point Ray Tracing 

 

The inverse two-point ray tracing problem considers that  

the offset components are specified while the opening 

angle, the phase azimuth and the traveltime are to be found. 

We solve a set of two nonlinear equations by Newton 

method, where the right sides of the equations are the offset 

components, and the unknowns are the opening angle and 

the slowness azimuth. Before the inversion, we perform a 

forward shooting for a large number of rays (given their 

phs  and phs ), and we record the offset components of 

the nodes on the surface. The take-off angles are discretized 

with a spherical spiral nodes (Koren and Ravve, 2012), 

where phs  and phs  of the ray pairs change continuously 

along a 1D line on the spherical surface, and equal areas on 

the sphere are related to each spiral node. Next we apply 

Delaunay triangulation, and the surface nodes become 

vertices of the triangles. To find the initial guess for a given 

offset 21,hh , we find the triangle that contains this point 

inside and the area coordinates 1,,, 321321  llllll . The 

latter are then used as weights for the linear interpolation. 

The convergence of the two-point ray tracing is relatively 

fast for pure-mode P-waves and slower for P-S1 and P-S2 

converted waves. For pure-mode S1 and S2 or converted 

wave S1-S2, the convergence is rather slow, and more rays 

have to be shot for the initial guess. Still, the numerical 

simulations show that for shear waves, there may be 

shadow zones or poorly illuminated regions even for 1D 

layered triclinic medium. 

 

Synthetic Example 

 

We prepared a synthetic example for 10-layer TOR model 

with specified layer properties, thickness and orientation 

angles, and we computed forward (shooting) and inverse 

(two-point) ray tracing for pure-mode P and converted P-

S1, P-S2 and S1-S2 waves. We do not list the table with the 

layer properties and the simulation results as they are too 

long for this abstract. 

 

Conclusions 

 

We developed and tested a method for forward (shooting) 

and inverse (two-point) numerical ray tracing in 1D TOR 

and triclinic layered media for all types of pure-mode and 

converted waves.  
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Vector imaging of the decomposed elastic wave modes for 3D heterogeneous TI media
Jiubing Cheng* and Chenlong Wang, School of Ocean and Earth Science, Tongji University

SUMMARY

3D seismic imaging of multicomponent data involves many
complexities and challenges, especially in anisotropic media.
We discuss a vector imaging approach that honors the elas-
tic effects of 3D primary reflections in heterogeneous trans-
verseley isotropic (TI) media. Elastic reverse-time migration
(ERTM) examples will demonstrate the validaty and advan-
tages of this approach.

INTRODUCTION

Seismic waves propagate through the earth media as a super-
position of compressional (P) and shear (S) waves. Recording
both wave modes through multicomponent seismic acquires
more information related to rock properties and thus allows
better subsurface imaging and reservoir characterization. As
the industry turns towards higher-risk conventional and un-
conventional hydrocarbon reservoirs, multicomponent seismic
shall play more significant role than before.

Generally, multicomponent data are separated into single mode
seismograms and then processed as scalar and acoustic pres-
sure fields. This may lose significant information that indicates
lithology and fluid properties due to ignoring some important
elastic effects and unsuccessful P/S separation. Elastic Kirch-
hoff and wave-equation migration have shown some promise
(Kuo and Dai, 1984; Sun and McMechan, 1986). However,
the cross-talks of different body-wave modes make it chal-
lenging to obtain physically interpretable images, unless mode
decoupling is achieved before imaging. Based on the theory
of Helmholtz decomposition, the propagating elastic waves
are generally separated into scalar P-wave and vector S-wave
fields using divergence and curl operators, e.g., Xie and Wu
(2005); Yan and Sava (2008). Nevertheless, the inconformity
of the separated P and S modes causes difficulties for imag-
ing the converted waves, especially in 3D cases. To exploit
the decoupled P and S modes, Du et al. (2014) suggested a
scalarization of the vector S-wave fields, and Duan and Sava
(2015) suggested a vectorization of the scalar P-wave fileds.
These operations are also necessary to correct polarity reversal
on the images of the converted waves.

Generally, anisotropic P- and S-waves don’t polarize paral-
lel or perpendicular to wave vector. So, decoupling the wave
modes involves more complexities in anisotropic media. Dellinger
and Etgen (1990) presented anisotropic P/S separation in prop-
agating elastic waves using divergencelike and curllike opera-
tors. Their method had been extended to obtain pure-mode
scalar and vector fields for each mode in TI media(Yan and
Sava, 2009; Zhang and McMechan, 2010). Fast algorthims
have been presented to improve the efficiency of mode sepa-
ration for heterogeneous TI media (Cheng and Fomel, 2014).
Based upon these progresses, Wang et al. (2015, 2016) pre-
sented new scalar and vector imaging conditions for the decou-

pled wave modes in heterogeneous TI media. Here we supple-
ment some physical insights for the vector imaging condition
and demonstrate its advantages with 3D synthetic examples.

METHODOLGY

As shown in Figure 1, we confine our discussion to P-wave
incidence, although the approach works for S-wave or mixed-
mode incidence. The converted SV-wave in the TI layer will
split into two S (S1 & S2) modes with different phase ve-
locities when it leaves the local interface. For a successful
ERTM, mode decoupling is a prerequisite to obtain physically
interpretable images. The far-field body-waves can be sepa-
rated into pure modes according to their polarization directions
(Dellinger and Etgen, 1990; Zhang and McMechan, 2010).
Unlike the well-behaved P mode, the S modes do not consis-
tently polarize as a function of the propagation direction in
anisotropic media. For TI media, however, they can be desig-
nated as SV and SH waves, which have consistent polarization,
except in the direction of symmetry-axis (Winterstein, 1990).

We first decompose the propagated wavefields into single-mode
vector fileds using (Cheng and Fomel, 2014):

um(x)=
∫

eikxam(x,k)[am(x,k)·ũ(k)]dk, m∈{P,SV,SH},
(1)

in which k denotes the wave vector, ũ(k) represents the to-
tal elastic wavefield in wavenumber-domain, am (x,k) stands
for the normalized polarization vector, and um(x) the decom-
posed vector field of the given mode at spatial location x. We
solve the Christoffel equation to get the polarization vector of
P-wave, and then obtain the polarization vectors of SV and SH
modes using the P-SV-SH polarization orthogonality. Polar
angle-based tapering is also applied to mitigate the kiss singu-
larity (Yan and Sava, 2012).

Then we apply a cross-correlation imaging condition to the
decomposed source and receiver wavefields in vector form:

Imn(x) =
1
γ

∫ tmax

0
[us

m(x, t) ·ur
n(x, t)]dt, (2)

with the scale factor γ given by

γ =

∫ tmax

0
[es

m(x, t) · er
n(x, t)][u

s
m(x, t) ·us

m(x, t)]dt, (3)

to balance the migration amplitudes. es
m and er

n denote the unit
polarization vectors of the source and receiver wavefields, us

m
and us

m, respectively.

Because the mode decomposition preserves the amplitude, phase
and polarization of P and S components as the total elastic
wavefields, this vector imaging condition produces more ac-
curate images for all reflected waves. Thanks to the polarity
information from the polarizations of the decoupled incident
and reflected waves, this imaging condition naturally avoids
polarity reversal for converted wave imaging.
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Vector imaging of the decoupled elastic waves

Figure 1: Reflected elastic waves of pure P-wave incidence at
a local interface in a 3D TI media. Vectors s and n denote the
symmetry axis and interface normal. Note that the SV and SH
modes polarize in and orthogonal to the symmetry-axis plane,
respectively.

EXAMPLES

A small three-layer VTI model is used to demonstrate the 3D
vector imaging approach. The first layer is a homogeneous
VTI medium with vp0 = 2000 m/s, vs0 = 1328 m/s, ε = 0.05,
δ = 0.03 and γ = 0.02. The second is a homogeneous isotropic
medium, with vp = 2300 m/s and vs = 1628 m/s. The third
is also a homogeneous VTI medium, with vp0 = 2600 m/s,
vs0 = 1928 m/s, ε = 0.10, δ = 0.06 and γ = 0.04. On the
surface, we trigger nine exploding sources symmetrically dis-
tributed like a 3× 3 array around the center with a minimum
offset of 50m. iFor ERTM, we image the reflected PP, PSV
and PSH waves, with the help of efficient mode decomposi-
tion algorithm (Cheng and Fomel, 2014). Despite of the arti-
facts due to the aperture limitation and imcomplete boundary
condition, this algorithm produces good images for all primary
reflections. We will demonstrate other examples including the
application to 3D horizontal transversely isotropic (HTI) mod-
els on the conference.

CONCLUSION

Accurate and efficient mode decomposition helps us to ob-
tain high-quality ERTM results for all primary reflections in
anistropic media. The vector imaging condition produce more
accurate migrated images and automatically avoid polarity re-
versal for imaging of the converted waves. This anisotropic
ERTM approach shows good potential for full-wave imaging,
anisotropic velocity analysis, and reservoir charactorization.
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Figure 2: ERTM of a three-layer VTI model: (a) geometry of
the model; (b) PSV, (c) PSH, (d) PS and (e) PP images.
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